dcase_models.model.KerasModelContainer

class dcase_models.model.KerasModelContainer(model=None, model_path=None, model_name='DCASEModelContainer', metrics=['classification'], **kwargs)[source]

Bases: dcase_models.model.container.ModelContainer

ModelContainer for keras models.

A class that contains a keras model, the methods to train, evaluate, save and load the model. Descendants of this class can be specialized for specific models (i.e see SB_CNN class)

Parameters:
model : keras.models.Model or None, default=None

If model is None the model is created with build().

model_path : str or None, default=None

Path to the model. If it is not None, the model loaded from this path.

model_name : str, default=DCASEModelContainer

Model name.

metrics : list of str, default=[‘classification’]

List of metrics used for evaluation. See dcase_models.utils.metrics.

kwargs

Additional keyword arguments to load_model_from_json().

__init__(model=None, model_path=None, model_name='DCASEModelContainer', metrics=['classification'], **kwargs)[source]

Initialize ModelContainer

Parameters:
model : keras model or similar

Object that defines the model (i.e keras.models.Model)

model_path : str

Path to the model file

model_name : str

Model name

metrics : list of str

List of metrics used for evaluation

Methods

__init__([model, model_path, model_name, …]) Initialize ModelContainer
build() Define your model here
check_if_model_exists(folder, **kwargs) Checks if the model already exits in the path.
cut_network(layer_where_to_cut) Cuts the network at the layer passed as argument.
evaluate(data_test, **kwargs) Evaluates the keras model using X_test and Y_test.
fine_tuning(layer_where_to_cut[, …]) Create a new model for fine-tuning.
get_available_intermediate_outputs() Return a list of available intermediate outputs.
get_intermediate_output(output_ix_name, inputs) Return the output of the model in a given layer.
get_number_of_parameters() Missing docstring here
load_model_from_json(folder, **kwargs) Loads a model from a model.json file in the path given by folder.
load_model_weights(weights_folder) Loads self.model weights in weights_folder/best_weights.hdf5.
load_pretrained_model_weights([weights_folder]) Loads pretrained weights to self.model weights.
save_model_json(folder) Saves the model to a model.json file in the given folder path.
save_model_weights(weights_folder) Saves self.model weights in weights_folder/best_weights.hdf5.
train(data_train, data_val[, weights_path, …]) Trains the keras model using the data and paramaters of arguments.
build()[source]

Define your model here

check_if_model_exists(folder, **kwargs)[source]

Checks if the model already exits in the path.

Check if the folder/model.json file exists and includes the same model as self.model.

Parameters:
folder : str

Path to the folder to check.

cut_network(layer_where_to_cut)[source]

Cuts the network at the layer passed as argument.

Parameters:
layer_where_to_cut : str or int

Layer name (str) or index (int) where cut the model.

Returns:
keras.models.Model

Cutted model.

evaluate(data_test, **kwargs)[source]

Evaluates the keras model using X_test and Y_test.

Parameters:
X_test : ndarray

3D array with mel-spectrograms of test set. Shape = (N_instances, N_hops, N_mel_bands)

Y_test : ndarray

2D array with the annotations of test set (one hot encoding). Shape (N_instances, N_classes)

scaler : Scaler, optional

Scaler objet to be applied if is not None.

Returns:
float

evaluation’s accuracy

list

list of annotations (ground_truth)

list

list of model predictions

fine_tuning(layer_where_to_cut, new_number_of_classes=10, new_activation='softmax', freeze_source_model=True, new_model=None)[source]

Create a new model for fine-tuning.

Cut the model in the layer_where_to_cut layer and add a new fully-connected layer.

Parameters:
layer_where_to_cut : str or int

Name (str) of index (int) of the layer where cut the model. This layer is included in the new model.

new_number_of_classes : int

Number of units in the new fully-connected layer (number of classes).

new_activation : str

Activation of the new fully-connected layer.

freeze_source_model : bool

If True, the source model is set to not be trainable.

new_model : Keras Model

If is not None, this model is added after the cut model. This is useful if you want add more than a fully-connected layer.

get_available_intermediate_outputs()[source]

Return a list of available intermediate outputs.

Return a list of model’s layers.

Returns:
list of str

List of layers names.

get_intermediate_output(output_ix_name, inputs)[source]

Return the output of the model in a given layer.

Cut the model in the given layer and predict the output for the given inputs.

Returns:
ndarray

Output of the model in the given layer.

get_number_of_parameters()[source]

Missing docstring here

load_model_from_json(folder, **kwargs)[source]

Loads a model from a model.json file in the path given by folder. The model is load in self.model attribute.

Parameters:
folder : str

Path to the folder that contains model.json file

load_model_weights(weights_folder)[source]

Loads self.model weights in weights_folder/best_weights.hdf5.

Parameters:
weights_folder : str

Path to save the weights file.

load_pretrained_model_weights(weights_folder='./pretrained_weights')[source]

Loads pretrained weights to self.model weights.

Parameters:
weights_folder : str

Path to load the weights file

save_model_json(folder)[source]

Saves the model to a model.json file in the given folder path.

Parameters:
folder : str

Path to the folder to save model.json file

save_model_weights(weights_folder)[source]

Saves self.model weights in weights_folder/best_weights.hdf5.

Parameters:
weights_folder : str

Path to save the weights file

train(data_train, data_val, weights_path='./', optimizer='Adam', learning_rate=0.001, early_stopping=100, considered_improvement=0.01, losses='categorical_crossentropy', loss_weights=[1], sequence_time_sec=0.5, metric_resolution_sec=1.0, label_list=[], shuffle=True, **kwargs_keras_fit)[source]

Trains the keras model using the data and paramaters of arguments.

Parameters:
X_train : ndarray

3D array with mel-spectrograms of train set. Shape = (N_instances, N_hops, N_mel_bands)

Y_train : ndarray

2D array with the annotations of train set (one hot encoding). Shape (N_instances, N_classes)

X_val : ndarray

3D array with mel-spectrograms of validation set. Shape = (N_instances, N_hops, N_mel_bands)

Y_val : ndarray

2D array with the annotations of validation set (one hot encoding). Shape (N_instances, N_classes)

weights_path : str

Path where to save the best weights of the model in the training process

weights_path : str

Path where to save log of the training process

loss_weights : list

List of weights for each loss function (‘categorical_crossentropy’, ‘mean_squared_error’, ‘prototype_loss’)

optimizer : str

Optimizer used to train the model

learning_rate : float

Learning rate used to train the model

batch_size : int

Batch size used in the training process

epochs : int

Number of training epochs

fit_verbose : int

Verbose mode for fit method of Keras model