DCASE-models

May 11, 2021

Contents:

9

Introduction
Installation instructions
Tutorial and examples
Extending the library
Development

Citation

Data

Models

Utilities

10 Indices and tables

Python Module Index

Index

13

19

21

23

79

127

147

149

151

DCASE-models

I N/ 1 /N /] I I

I /NN N T N/ N/ I/ _ N/ __I
Dol b — /N) b e b NN
\ /N /_/ AV /1 \ I T TN NN/

DCASE-models is an open-source Python library for rapid prototyping of environmental sound analysis systems, with
an emphasis on deep-learning models.

Contents: 1

DCASE-models

2 Contents:

CHAPTER 1

Introduction

DCASE-models is an open-source Python library for rapid prototyping of environmental sound analysis systems, with
an emphasis on deep—learning models. The project is on GitHub.

It’s main features / design goals are:

ease of use,
rapid prototyping of environmental sound analysis systems,

a simple and lightweight set of basic components that are generally part of a computational environmental audio
analysis system,

a collection of functions for dataset handling, data preparation, feature extraction, and evaluation (most of which
rely on existing tools),

a model interface to standardize the interaction of machine learning methods with the other system components,

an abstraction layer to make the library independent of the backend used to implement the machine learning
model,

inclusion of reference implementations for several state-of-the-art algorithms.

DCASE-models is a work in progress, thus input is always welcome.

The available documentation is limited for now, but you can help to improve it.

https://github.com/pzinemanas/dcase_model

DCASE-models

4 Chapter 1. Introduction

CHAPTER 2

Installation instructions

We recommend to install DCASE-models in a dedicated virtual environment. For instance, using anaconda:

conda create -n dcase python=3.6
conda activate dcase

DCASE-models uses SoX for functions related to the datasets. You can install it in your conda environment by:

conda install -c conda-forge sox

Before installing the library, you must install only one of the Tensorflow variants (CPU-only or GPU):

pip install "tensorflow<l1l.14" # for CPU-only version
pip install "tensorflow-gpu<l.l4" # for GPU version

Then, you can install the library through the Python Package Index (PyPI) or from the source as explained below.

2.1 pypi

The simplest way to install DCASE-models is through the Python Package Index (PyPI). This will ensure that all
required dependencies are fulfilled. This can be achieved by executing the following command:

’pip install dcase_models

or:

’sudo pip install dcase_models

to install system-wide, or:

’pip install -u dcase_models

to install just for your own user.

https://www.anaconda.com/
http://sox.sourceforge.net/

DCASE-models

2.2 source

If you’ve downloaded the archive manually from the releases page, you can install using the setuptools script:

tar xzf dcase_models-VERSION.tar.gz
cd dcase_models-VERSION/
python setup.py install

If you intend to develop DCASE-models or make changes to the source code, you can install with pip install -e to link
to your actively developed source tree:

tar xzf dcase_models-VERSION.tar.gz
cd dcase_models-VERSION/
pip install -e

Alternately, the latest development version can be installed via pip:

’pip install git+https://github.com/pzinemanas/dcase_models

2.3 sox

Say something about installing other dependencies such as sox.

6 Chapter 2. Installation instructions

https://github.com/pzinemanas/dcase_models/releases/

CHAPTER 3

Tutorial and examples

This is a tutorial introduction to quickly get you up and running with DCASE-models

The package of the library includes a set of examples, organized into three different categories, which illustrate the
usefulness of DCASE-models for carrying out research experiments or developing applications. These examples can
also be used as templates to be adapted for implementing specific DCASE methods. The type of examples provided
are:

* scripts that perform each step in the typical development pipeline of a DCASE task
* Jupyter Notebooks that replicate some of the experiments reported in the literature
» a web interface for sound classification as an example of a high—level application

The following section gives a walk-through of the example scripts provided. Then, the next section describes the
library organization and exemplifies the use of the most important classes and functionalities.

3.1 Example scripts

A set of Python scripts is provided in the examples folder of the package. They perform each step in the typical
development pipeline of a DCASE task, i.e downloading a dataset, data augmentation, feature extraction, model
training, fine-tuning, and model evaluation. Follow the instructions bellow to know how they are used.

3.1.1 Parameters setting

First, note that the default parameters are stored in the parameters. json file at the root folder of the package.
You can use other parameters. json file by passing its path in the —p (or ——path) argument of each script.

3.1.2 Usage information

In the following, we show examples on how to use these scripts for the typical development pipeline step by step. For
further usage information please check each script instructions by typing:

DCASE-models

python download_dataset.py ——help

3.1.3 Dataset downloading

First, let’s start by downloading a dataset. For instance, to download the ESC-50 dataset just type:

python download_dataset.py -d ESC50

Note: Note that by default the dataset will be downloaded to the . . /datasets/ESC50 folder, following the path
setin the parameters. json file. You can change the path or the parameters. json file. The datasets available
are listed in the Datasets section.

3.1.4 Data augmentation

If you want to use data augmentation techniques on this dataset, you can run the following script:

python data_augmentation.py —-d ESC50

Note: Note that the name and the parameters of each transformation are defined in the parameters. json file.
The augmentations implemented so far are pitch-shifting, time-stretching, and white noise addition. Please check the
AugmentedDataset class for further information.

3.1.5 Feature extraction

Now, you can extract the features for each file in the dataset by typing:

python extract_features.py -d ESC50 —-f MelSpectrogram

Note: Note that you have to specify the features name by the — £ argument, in this case Me 1 Spect rogram. All the
features representations available are listed in the Features section.

3.1.6 Model training

To train a model is also very straightforward. For instance, to train the SB_CNN model on the ESC-50 dataset with
the Me1Spectrogram features extracted before just type:

python train_model.py -d ESC50 —-f MelSpectrogram -m SB_CNN -fold foldl

Note: Note that in this case you have to pass the model name and a fold name as an argument, using -m and -fold,
respectively. This fold is considered to be the fold for testing, meaning that it will not be used during training. All the
implemented models available are listed in the /mplemented models section.

8 Chapter 3. Tutorial and examples

https://github.com/karolpiczak/ESC-50
https://github.com/karolpiczak/ESC-50

DCASE-models

3.1.7 Model evaluation

Once the model is trained, you can evaluate the model in the test set by typing:

python evaluate_model.py -d ESC50 —-f MelSpectrogram -m SB_CNN -fold foldl

Note: Note that the fold specified as an argument is the one used for testing. This scripts prints the results that we get
from sed_eval library.

3.1.8 Fine-tuning

Once you have a model trained in some dataset, you can fine-tune the model on another dataset. For instance, to use a
pre-trained model on the ESC-50 dataset and fine-tune it on the MAVD dataset just type:

python fine_tuning.py -od ESC50 -ofold foldl —-f MelSpectrogram -m SB_CNN -d MAVD -
—fold test

Note: Note that the information of the original dataset is set by the —od and —ofold arguments. Besides, the —d
and —fold arguments set the new dataset and the test fold, respectively.

3.2 Library organization

A description of the main classes and functionalities of the library is presented in this section, following the order of
the typical pipeline: dataset preparation, data augmentation, feature extraction, data loading, data scaling, and model
handling. Example code is provided for each step, but please check the documentation of the classes for further
information.

The following is a class diagram of DCASE-models showing all the base classes and some of the implemented spe-
cializations.

i Uti ions e icati i ; .
Ut'lFunCt'onS ; Application Script > ModelContainer

Scaler Dataset DataGenerator FeatureExtractor KerasModelContainer

| \ A | — N -

. |AugmentedDataset ‘ Openl3 |SB_CNN| ‘A_CRNN| ‘MLP‘ |VGGish|
|ESC50| ‘SONYC_UST‘ ‘MAVD||TAUUrbanAcoust|cScenes‘ pen
|SB_CNN_SED‘ ‘SMe| | |M5T|
\UrbanSoundBk H URBAN_SED | ‘FSDKaggIe2018| TUTSoundEventsZOl?‘ Spectrogram

| ESC10 || TAUUrbanAcousticScenesZOlg| |TAUUrbanAcousticScenesZOZOMobiIe| MelSpectrogram

3.2.1 Dataset
This is the base class designed to manage a dataset, its paths, and its internal structure. It includes methods to download
the data, resample the audio files, and check that both processes succeed.

The library covers several publicly available datasets related to different tasks. Please check the list of currently
available datasets in the Datasets section.

3.2. Library organization 9

https://tut-arg.github.io/sed_eval/
https://github.com/karolpiczak/ESC-50
https://doi.org/10.5281/zenodo.3338727
_static/DCASE-class-diagram.png

DCASE-models

Each dataset is implemented in the library as a class that inherits from Dataset. This design provides a common
and simple interface to work with any dataset. For instance, to use the UrbanSound8k dataset, it is enough to initialize
its class with the path to the data folder, as follows.

dataset = UrbanSound8k (DATASET PATH)

Then, the following methods are used to download the dataset and change its sampling rate (to 22050 Hz).

dataset .download ()
dataset.change_sampling_rate (22050)

Note: Note that most of the datasets devised for research include a fold split and a corresponding evaluation setup
(e.g. 5-fold cross-validation). This fold split is generally carefully selected to avoid biases and data contamination. In
order to keep the results comparable to those reported in the literature, DCASE-models uses, whenever available, the
predefined splits for each dataset. However, the user may define different splits or evaluation setups if needed.

3.2.2 AugmentedDataset

The previously defined dataset instance can be expanded using data augmentation techniques. The augmentations
implemented so far are pitch-shifting, time-stretching, and white noise addition. The first two are carried out by means
of pysox.

An augmented version of a given dataset can be obtained by initializing an instance of the AugmentedDataset class
with the dataset as a parameter, as well as a dictionary containing the name and parameters of each transformation.

aug_dataset = AugmentedDataset (dataset,
augmentations)

After initialization, the following method will perform the actual augmentation and create new audio files for every
dataset element according to the type and parameters of each augmentation.

aug_dataset.process ()

Note: Note that the augmented dataset is indeed an instance of Dataset, so it can be used as any other dataset in
the following steps of the pipeline.

3.2.3 FeatureExtractor

This is the base class to define different types of feature representations. It has methods to load an audio file, extract
features, and save them. It can also check if the features were already extracted.

Feature representations are implemented as specializations of the base class FeatureExtractor, for instance,
Spectrogram. Please check the list of currently available features in the Features section.

A FeatureExtractor is initialized with some parameters. For instance, to define a MelSpectrogram
feature extractor the parameters are: length and hop in seconds of the feature representation analysis window
(sequence_time and sequence_hop_time); window length and hop size (in samples) for the short-time
Fourier Transform (STFT) calculation (audio_win and audio_hop); and the audio sampling rate (sr).

features = Spectrogram(sequence_time=1.0, sequence_hop_time=0.5,
audio_win=1024, audio_hop=512, sr=22050)

10 Chapter 3. Tutorial and examples

https://urbansounddataset.weebly.com/urbansound8k.html
https://github.com/rabitt/pysox

DCASE-models

After initialization, the following method computes the features for each audio file in the dataset.

features.extract (dataset)

Once the features are extracted and saved to disk, they can be loaded using DataGenerator as explained in the
following.

Note: Note that if the audio files are not sampled at the given frequency, they are converted before calculating the
features.

3.2.4 DataGenerator

This class uses instances of Dataset and FeatureExtractor to prepare the data for model training, validation
and testing. An instance of this class is created for each one of these processes.

data_gen_train = DataGenerator (dataset,
features,
train=True,
folds=["train’])

data_gen_val = DataGenerator (dataset,
features,
train=False,
folds=["val’])

At this point of the pipeline, the features and the annotations for training the model can be obtained as follows.

X_train, Y_train = data_gen_train.get_data()

Note: Note that instances of DataGenerator can be used to load data in batches. This feature is especially useful
for traininga models on systems with memory limitations.

3.2.5 Scaler

Before feeding data to a model, it is common to normalize the data or scale it to a fixed minimum and maximum value.
To do this, the library contains a Scaler class, based on scikit-learn preprocessing functions, that includes £it and
transform methods.

scaler = Scaler ("standard")
scaler.fit (X_train)
X_train = scaler.transform(X_train)

In addition, the scaler can be fitted in batches by means of passing the Dat aGenerator instance instead of the data
itself.

scaler.fit (data_gen_train)

It is also possible to scale the data as it is being loaded from the disk, for instance, when training the model. To do so,
the Scaler can be passed to the DataGenerator after its initialization.

3.2. Library organization 11

https://scikit-learn.org/

DCASE-models

data_gen_val.set_scaler (scaler)

3.2.6 ModelContainer

This class defines an interface to standardize the behavior of machine learning models. It stores the architecture and
the parameters of the model. It provides methods to train and evaluate the model, and to save and load its architecture
and weights. It also allows the inspection of the output of its intermediate stages (i.e. layers).

The library also provides a container class to define Keras models, namely KerasModelContainer, that inher-
its from ModelContainer, and implements its functionality using this specific machine learning backend. Even
though the library currently supports only Keras, it is easy to specialize the ModeIContainer class to integrate
other machine learning tools, such as PyTorch.

Each model has its own class that inherits from a specific ModelContainer, such as KerasModelContainer.
Please check the list of currently available features in the /mplemented models section.

A model’s container has to be initialized with some parameters. These parameters vary across models, among which
the most important are: input shape, number of classes, and evaluation metrics. Specific parameters may include the
number of hidden layers or the number of convolutional layers, among others.

’model_cont = SB_CNN (*+*model_params)

The Mode1Container class has a method to train the model. Training parameters can include, for example, number
of epochs, learning rate and batch size.

’model_cont.train((X_train, Y _train), xxtrain_params)

To train the model in batches, the DataGenerator object can be passed to the t rain method instead of the
pre-loaded data.

’model_cont.train(data_gen_train, x+train_params)

Performing model evaluation is also simple. For instance, the following code uses the test set for evaluating the model.

data_gen_test = DataGenerator (dataset,
features,
train=False,
folds=["test’])

X_test, Y_test = data_gen_test.get_data()

results = model_cont.evaluate ((X_test, Y_test))

The results’ format depends on which metrics are used. By default, the evaluation is performed using the metrics avail-
able from the sed_eval library. Therefore, the results are presented accordingly. Nevertheless, DCASE-models enables
the use of others evaluating frameworks such as psds_eval, or the use of user-defined metrics in a straightforward way.

When building deep-learning models it is common practice to use fine-tuning and transfer learning techniques. In this
way, one can reuse a network that was previously trained on another dataset or for another task, and adapt it to the
problem at hand. This type of approach can also be carried out with the ModeIContainer.

12 Chapter 3. Tutorial and examples

https://keras.io/
https://keras.io/
https://pytorch.org/
https://tut-arg.github.io/sed_eval/
https://github.com/audioanalytic/psds_eval

CHAPTER 4

Extending the library

This section includes clear instructions on how to extend different components of DCASE-models.

4.1 Datasets

Each dataset is implemented in the library as a class that inherits from Dataset.
To include a new dataset in the library you should extend the Dataset class and implement:
e __init___, where you can define and store arguments related to the dataset.
* build, where you define the fold list, label list, paths, etc.
* generate_file_lists, where you define the dataset structure.
* get_annotations, where you implement the function to get the annotations from a given audio file.
* download, where you implement the steps to download and decompress the dataset.

Below we follow all the necessary steps to implement a new dataset. Let’s assume that the new dataset has two labels
(dog and cat), three folds (train, validate and test), and the audio files are stored in DATASET_PATH/audio. Besides
the new dataset has the following structure:

DATASET_PATH/
\
|- audio/

| |- train
| | |- filel-0-X.wav
| | |- file2-1-X.wav
| | |- file3-0-X.wav
[

| |- validate

| | |- filel-1-Y.wav
| | |- file2-0-Y.wav
| | |- file3-1-Y.wav

(continues on next page)

13

DCASE-models

(continued from previous page)

\
| |- test

| | |- filel-1-Z.wav
| | |- file2-0-Z.wav
| | |- file3-0-Z.wav

Note that each fold has a folder inside the audio path. Also the file name includes the class label coded after the first
dash character (0 for dog, 1 for cat).

The first step is to create a new class that inherits from Dataset, and implementits __init__ () method. Since the
only argument needed for this custom dataset is its path, we simply initialize the super () .__init__ () method.
If your dataset needs other arguments from the user, add them here.

from dcase_models.data.dataset_base import Dataset

class CustomDataset (Dataset) :
def _ _init__ (self, dataset_path):
Don't forget to add this line
super () .__init__ (dataset_path)

Now implement the build () method. You should define here the audio_path, fold_list and label_list
attributes. You can also define other attributes for your dataset.

def build(self):
self.audio_path = os.path.join(self.dataset_path, 'audio')

self.fold_list = ["train", "validate", "test"]
self.label_list = ["dog", "cat"]
self.evaluation_mode = 'train-validate-test'

The generate_file lists () method defines the structure of the dataset. Basically this structure is defined in
the self.file_lists dictionary. This dictionary stores the list of the paths to the audio files for each fold in the
dataset. Note that you can use the 1 ist_wav_files () function to list all wav files in a given path.

def generate_file_lists(self):
for fold in self.fold_list:
audio_folder = os.path.join(self.audio_path, fold)
self.file_lists[fold] = list_wav_files (audio_folder)

Now let’s define get_annotations (). This method receives three arguments: the path to the audio file, the
features representation and the time resolution (used when the annotations are defined following a fix time-grid, e.g
see URBAN_SED). Note that the first dimension (index sequence) of the annotations and the feature representation
coincide. In this example the label of each audio file is coded in its name as explained before.

def get_annotations(self, file_name, features, time_resolution):
y = np.zeros((len(features), len(self.label_list)))
class_ix = int (os.path.basename (file_name) .split ('-")[1])
y[:, class_ix] =1
return y

The download () method defines the steps for downloading the dataset. You can use the download()
method from the parent Dataset to download and decompress all files from zenodo. Also you can use
move_all_files_to_parent () function to move all files from a subdirectory to the parent.

def download(self, force_download=False) :
zenodo_url = "https://zenodo.org/record/1234567/files"

(continues on next page)

14 Chapter 4. Extending the library

DCASE-models

(continued from previous page)

zenodo_files = ["CustomDataset.tar.gz"]

downloaded = super () .download/(
zenodo_url, zenodo_files, force_download

)

if downloaded:
mv self.dataset_path/CustomDataset/+ self.dataset_path/
move_all_files_to_parent (self.dataset_path, "CustomDataset")
Don't forget this line
self.set_as_downloaded()

Note: If you implement a class for a publicly available dataset that is not present in Dataset, consider filing a
Github issue or, even better, sending us a pull request.

4.2 Features

Feature representations are implemented as specializations of the base class FeatureExtractor.
In order to implement a new feature you should write a class that inherits from FeatureExtractor.
The methods you should reimplement are:

e __init__, where you can define and store the features arguments.

* calculate, where you define the feature calculation process.

For instance, if you want to implement Chroma features:

import numpy as np
import librosa
from dcase_models.data.features import FeatureExtractor

class Chroma (FeatureExtractor) :
def _ init__ (self, sequence_time=1.0, sequence_hop_time=0.5,
audio_win=1024, audio_hop=680, sr=22050,
n_fft=1024, n_chroma=12, pad_mode='reflect'):

super () .__init__ (sequence_time=sequence_time,
sequence_hop_time=sequence_hop_time,
audio_win=audio_win, audio_hop=audio_hop,
Sr=sr)

self.n_fft = n_fft
self.n_chroma = n_chroma
self.pad_mode = pad_mode

def calculate(self, file_name) :
Load the audio signal
audio = self.load_audio(file_name)

Pad audio signal
if self.pad_mode is not None:
audio = librosa.util.fix_length(
audio,

(continues on next page)

4.2. Features 15

DCASE-models

(continued from previous page)

audio.shape[0] + librosa.core.frames_to_samples (
self.sequence_frames, self.audio_hop, n_fft=self.n_fft),
axis=0, mode=self.pad_mode

Get the spectrogram, shape (n_freqgs, n_frames)

stft = librosa.core.stft (audio, n_fft=self.n_fft,
hop_length=self.audio_hop,
win_length=self.audio_win, center=False)

Convert to power

spectrogram = np.abs (stft) «*2

Convert to chroma_stft, shape (n_chroma, n_frames)
chroma = librosa.feature.chroma_stft (
S=spectrogram, sr=self.sr, n_fft=self.n_fft, n_chroma=self.n_chroma)

Transpose time and freq dims, shape (n_frames, n_chroma)
chroma = chroma.T

Windowing, creates sequences
chroma = np.ascontiguousarray (chroma)
chroma = librosa.util.frame(
chroma, self.sequence_frames, self.sequence_hop, axis=0

return chroma

4.3 Models

The models are implemented as specializations of the base class KerasModelContainer.

To include a new model in the library you should extend the KerasModelContainer class and implement the
following methods:

e __init__, where you can define and store the model arguments.
e build, where you define the model architecture.

Note that you might also reimplement the t rain () method. This specially useful for complex models (multiple
inputs and outputs, custom loss functions, etc.)

For instance, to implement a simple Convolutional Neural Network:

from keras.layers import Input, Lambda, Conv2D, MaxPooling2D
from keras.layers import Dropout, Dense, Flatten

from keras.layers import BatchNormalization

from keras.models import Model

import keras.backend as K

from dcase_models.model.container import KerasModelContainer

class CNN (KerasModelContainer) :
def _ _init__ (self, model=None, model_path=None,
metrics=['classification'], n_classes=10,
n_frames=64, n_freqgs=128):

(continues on next page)

16 Chapter 4. Extending the library

DCASE-models

(continued from previous page)

self.n_classes = n_classes
self.n_frames = n_frames
self.n_fregs = n_fregs

Don't forget this line
super () .__init__ (model=model, model_path=model_path,
model_name='MLP', metrics=metrics)

def build(self):
Iinput

x = Input (shape=(self.n_frames, self.n_freqgs), dtype='float32', name='input')

expand dims
y = Lambda (lambda x: K.expand_dims(x, -1), name='expand_dims') (x)

CONV 1

y = Conv2D (24, (5, 5), padding='wvalid',
activation='relu', name='convl') (y)

y = MaxPooling2D (pool_size=(2, 2), strides=None,

padding='valid', name='maxpooll') (y)
y = BatchNormalization (name='batchnorml') (y)
CONV 2
= Conv2D (24, (5, 5), padding='valid',

activation='relu', name='conv2') (y)

y = BatchNormalization (name='"batchnorm2") (y)

Flatten and Dropout
y = Flatten(name='flatten'") (y)
y = Dropout (0.5, name='dropoutl') (y)

Dense layer
y = Dense(self.n_classes, activation='softmax', name='out') (y)

Create model
self.model = Model (inputs=x, outputs=y, name='model')

Don't forget this line
super () .build()

4.3. Models

17

DCASE-models

18 Chapter 4. Extending the library

CHAPTER B

Development

As an open-source project by researchers for researchers, we highly welcome any contribution!

5.1 What to contribute

5.1.1 Give feedback

To send us general feedback, questions or ideas for improvement, please post on our mailing list.

5.1.2 Report bugs

Please report any bugs at the issue tracker on GitHub. If you are reporting a bug, please include:
* your version of madmom,
* steps to reproduce the bug, ideally reduced to as few commands as possible,
* the results you obtain, and the results you expected instead.

If you are unsure whether the experienced behaviour is intended or a bug, please just ask on our mailing list first.

5.1.3 Fix bugs

Look for anything tagged with “bug” on the issue tracker on GitHub and fix it.

5.1.4 Features

Please do not hesitate to propose any ideas at the issue tracker on GitHub. Think about posting them on our mailing
list first, so we can discuss it and/or guide you through the implementation.

19

https://groups.google.com/
https://github.com/pzinemanas/dcase_models/issues
https://groups.google.com/
https://github.com/pzinemanas/dcase_models/issues
https://github.com/pzinemanas/dcase_models/issues
https://groups.google.com/
https://groups.google.com/

DCASE-models

Alternatively, you can look for anything tagged with “feature request” or “enhancement” on the issue tracker on
GitHub.

5.1.5 Write documentation
Whenever you find something not explained well, misleading or just wrong, please update it! The Edit on GitHub link

on the top right of every documentation page and the [source] link for every documented entity in the API reference
will help you to quickly locate the origin of any text.

5.2 How to contribute

5.2.1 Edit on GitHub

As a very easy way of just fixing issues in the documentation, use the Edit on GitHub link on the top right of a
documentation page or the [source] link of an entity in the API reference to open the corresponding source file in
GitHub, then click the Edit this file link to edit the file in your browser and send us a Pull Request.

For any more substantial changes, please follow the steps below.

5.2.2 Fork the project

First, fork the project on GitHub.

Then, follow the general installation instructions and, more specifically, the installation from source. Please note that
you should clone from your fork instead.

5.2.3 Documentation

The documentation is generated with Sphinx. To build it locally, run the following commands:

cd docs
make html

Afterwards, open docs/_build/html/index.html to view the documentation as it would appear on readthe-
docs. If you changed a lot and seem to get misleading error messages or warnings, run make clean html to force
Sphinx to recreate all files from scratch.

When writing docstrings, follow existing documentation as much as possible to ensure consistency throughout the
library. For additional information on the syntax and conventions used, please refer to the following documents:

e reStructuredText Primer
* Sphinx reST markup constructs

¢ A Guide to NumPy/SciPy Documentation

20 Chapter 5. Development

https://github.com/pzinemanas/dcase_models/issues
https://github.com/pzinemanas/dcase_models/issues
https://github.com/pzinemanas/dcase_models
http://sphinx-doc.org/latest/index.html
http://dcase_models.readthedocs.org/
http://dcase_models.readthedocs.org/
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/markup/index.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

CHAPTER O

Citation

If you use DCASE-models in your work, please consider citing it:

@inproceedings{DCASE-models,
Title = {{DCASE-models: a Python library for Computational Environmental Sound,
—~Analysis using deep-learning models}},

Author = {Zinemanas, Pablo and Hounie, Ignacio and Cancela, Pablo and Font,
—Frederic and Rocamora, Martin and Serra, Xavier},
Booktitle = {Proceedings of the Detection and Classification of Acoustic Scenes,

—and Events (DCASE) Workshop},
Month = {11},
Year = {2020},
Pages = {??2--27?},
Address = {Tokyo, Japan},
Doi = {10.00/00000.0000}

21

DCASE-models

22

Chapter 6. Citation

CHAPTER /

Data

7.1 Datasets
Datasets are implemented as specializations of the base class Dataset.

Dataset(dataset_path) Abstract base class to load and manage DCASE

datasets.

UrbanSound8k(dataset_path) UrbanSound8k dataset.

ESC50(dataset_path) ESC-50 dataset.

ESC10(dataset_path) ESC-10 dataset.

URBAN_SED(dataset_path) URBAN-SED dataset.

SONYC_UST(dataset_path) SONYC-UST dataset.

TAUUrbanAcousticScenes201 9(dataset_path) TAU Urban Acoustic Scenes 2019 dataset.
TAUUrbanAcousticScenes2020Mobile(dataset_pdAJU Urban Acoustic Scenes 2019 dataset.

TUTSoundEvents201 7(dataset_path) TUT Sound Events 2017 dataset.
FSDKaggleZ2018(dataset_path) FSDKaggle2018 dataset.
MAVD(dataset_path) MAVD-traffic dataset.

7.1.1 dcase_models.data.Dataset
class dcase_models.data.Dataset (dataset_path)
Bases: object
Abstract base class to load and manage DCASE datasets.
Descendants of this class are defined to manage specific DCASE databases (see UrbanSound8k, ESC50)
Parameters

dataset_path [str] Path to the dataset fold. This is the path to the folder where the complete
dataset will be downloaded, decompressed and handled. It is expected to use a folder name
that represents the dataset unambiguously (e.g. ../datasets/UrbanSound8k).

23

DCASE-models

Examples

To create a new dataset, it is necessary to define a class that inherits from Dataset. Then is required to define the
build, generate_file_lists, get_annotations and download (if online available) methods.

>>> from dcase_models.util import list_wav_files
>>> class TestDataset (Dataset) :
>>> def __ _init__ (self, dataset_path):
>>> super () .__init__ (dataset_path)
>>> def build(self):
>>> self.audio_path = os.path.join(self.dataset_path, 'audio')
>>> self.fold_list = ["train", "validate", "test"]
>>> self.label_list = ["cat", "dog"]
>>> def generate_file_lists(self):
>>> for fold in self.fold_list:
>>> audio_folder = os.path.join(self.audio_path, fold)
>>> self.file_lists[fold] = list_wav_files (audio_folder)
>>> def get_annotations(self, file_path, features):
>>> y = np.zeros((len(features), len(self.label_1list)))
>>> class_ix = int (os.path.basename (file_path) .split ('-")[11])
>>> y[:, class_ix] =1
>>> return y
>>> def download(self, force_download=False) :
>>> zenodo_url = "https://zenodo.org/record/123456/files"
>>> zenodo_files = ["TestData.tar.gz"]
>>> downloaded = super () .download(
>>> zenodo_url, zenodo_files, force_download
>>>)
>>> if downloaded:
>>> move_all_ files_to_parent (self.dataset_path, "TestData")
>>> self.set_as_downloaded()
Attributes

file_lists [dict] This dictionary stores the list of files for each fold. Dict of form: {fold_name :
list_of_files}. e.g. {‘foldl’ : [filel, file2 ...], ‘fold2’ : [file3, file4 ...].}.

audio_path [str] Path to the audio folder, i.e {self.dataset_path}/audio. This attribute is defined
in build()

fold_list [list] List of the pre-defined fold names. e.g. [‘fold1’, ‘fold2’, ‘fold3’, ...]

label_list [list] List of class labels. e.g. [‘dog’, ‘siren’, ...]

__init__ (dataset_path)

Init Dataset

Methods

24

Chapter 7. Data

DCASE-models

___init__ (dataset_path) Init Dataset

build() Builds the dataset.

change_sampling_rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.

check_1if downloaded() Checks if the dataset was downloaded.

check_sampling_rate(sr) Checks if dataset was resampled before.

convert_to_wav([remove_original]) Converts each file in the dataset to wav format.

download(zenodo_url, zenodo_files], ...]) Downloads and decompresses the dataset from zen-
odo.

generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.

get_annotations(file_path, features, ...) Returns the annotations of the file in file_path.

get_audio_paths([sr]) Returns paths to the audio folder.

set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.

build()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path
and save the result in the new folder.

Parameters
sr [int] Sampling rate.

check_if downloaded()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling rate (sr)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted
Parameters

remove_original [bool] Remove original files.

7.1.

Datasets 25

DCASE-models

download (zenodo_url, zenodo_files, force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [‘filel.tar.gz’, “file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_path, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features
Returns

ndarray Annotations of the file file_path Expected output shape: (features.shape[0],
len(self.label_list))

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [{{DATASET_PATH }/audio/original’]

set_as_downloaded ()
Saves a download.txt file in dataset_path as a downloaded flag.

7.1.2 dcase_models.data.UrbanSound8k

class dcase_models.data.UrbanSound8k (dataset_path)
Bases: dcase_models.data.dataset_base.Dataset

UrbanSound8k dataset.

This class inherits all functionality from Dataset and defines specific attributs and methods for UrbanSound8k.

Url: https://urbansounddataset.weebly.com/urbansound8k.html

26 Chapter 7. Data

https://zenodo.org/record/12345/files
https://urbansounddataset.weebly.com/urbansound8k.html

DCASE-models

J. Salamon, C. Jacoby, and J. P. Bello “A dataset and taxonomy for urban sound research,” 22st ACM Interna-
tional Conference on Multimedia (ACM-MM’14) Orlando, FL, USA, November 2014

Parameters

dataset_path [str] Path to the dataset fold. This is the path to the folder where the complete
dataset will be downloaded, decompressed and handled. It is expected to use a folder name
that represents the dataset unambiguously (e.g. ../datasets/UrbanSound8k).

Examples

To work with UrbanSound8k dataset, just initialize this class with the path to the dataset.

>>> from dcase_models.data.datasets import UrbanSound8k
>>> dataset = UrbanSound8k('../datasets/UrbanSound8K")

Then, you can download the dataset and change the sampling rate.

>>> dataset.download()
>>> dataset.change_sampling_rate (22050)

__init__ (dataset_path)

Init Dataset
Methods
___init__(dataset_path) Init Dataset
build() Builds the dataset.
change_sampling rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.
check_1if downloaded() Checks if the dataset was downloaded.
check_sampling_rate(sr) Checks if dataset was resampled before.
convert_to_wav([remove_original]) Converts each file in the dataset to wav format.
download([force_download]) Downloads and decompresses the dataset from zen-
odo.
generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.
get_annotations(file_name, features, ...) Returns the annotations of the file in file_path.
get_audio_paths([sr]) Returns paths to the audio folder.
set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.
build()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path
and save the result in the new folder.

Parameters

7.1.

Datasets 27

DCASE-models

sr [int] Sampling rate.

check_if downloaded ()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling rate (sr)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted
Parameters
remove_original [bool] Remove original files.

download (force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [‘filel.tar.gz’, ‘file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_name, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features
Returns

ndarray Annotations of the file file_path Expected output shape: (features.shape[O],
len(self.label _list))

28 Chapter 7. Data

https://zenodo.org/record/12345/files

DCASE-models

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [{DATASET_PATH }/audio/original’]

set_as_downloaded ()
Saves a download.txt file in dataset_path as a downloaded flag.

7.1.3 dcase _models.data.ESC50

class dcase_models.data.ESC50 (dataset_path)
Bases: dcase_models.data.dataset_base.Dataset

ESC-50 dataset.
This class inherits all functionality from Dataset and defines specific attributes and methods for ESC-50.
Url: https://github.com/karolpiczak/ESC-50

K. J. Piczak “Esc: Dataset for environmental sound classification,” Proceedings of the 23rd ACM international
conference on Multimedia Brisbane, Australia, October, 2015.

Parameters

dataset_path [str] Path to the dataset folder. This is the path to the folder where the complete
dataset will be downloaded, decompressed and handled. It is expected to use a folder name
that represents the dataset unambiguously (e.g. ../datasets/ESCS50).

Examples

To work with ESC50 dataset, just initialize this class with the path to the dataset.

>>> from dcase_models.data.datasets import ESC50
>>> dataset = ESC50('../datasets/ESC50")

Then, you can download the dataset and change the sampling rate.

>>> dataset.download()
>>> dataset.change_sampling_rate (22050)

__init__ (dataset_path)
Init Dataset

Methods

___init__ (dataset_path) Init Dataset

Continued on next page

7.1. Datasets 29

https://github.com/karolpiczak/ESC-50

DCASE-models

Table 4 — continued from previous page

build() Builds the dataset.

change_sampling rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.

check_1if downloaded() Checks if the dataset was downloaded.

check_sampling rate(sr) Checks if dataset was resampled before.

convert_to_wav([remove_original]) Converts each file in the dataset to wav format.

down1oad([force_download]) Downloads and decompresses the dataset from zen-
odo.

generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.

get_annotat ions(file_name, features, ...) Returns the annotations of the file in file_path.

get_audio_paths([sr]) Returns paths to the audio folder.

get_basename_wav(filename)

set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.

build()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path
and save the result in the new folder.

Parameters
sr [int] Sampling rate.

check_if downloaded()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling rate (sr)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted
Parameters

remove_original [bool] Remove original files.

Chapter 7. Data

DCASE-models

download (force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [‘filel.tar.gz’, “file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_name, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features
Returns

ndarray Annotations of the file file_path Expected output shape: (features.shape[0],
len(self.label_list))

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [{DATASET_PATH }/audio/original’]

get_basename_wav (filename)

set_as_downloaded ()
Saves a download.txt file in dataset_path as a downloaded flag.

7.1.4 dcase_models.data.ESC10
class dcase_models.data.ESC10 (dataset_path)
Bases: dcase_models.data.datasets.ESC50
ESC-10 dataset.
This class inherits all functionality from Dataset and defines specific attributes and methods for ESC-10.

ESC-10 is a subsampled version of ESC-50.

7.1. Datasets 31

https://zenodo.org/record/12345/files

DCASE-models

Url: https://github.com/karolpiczak/ESC-50

K. J. Piczak “Esc: Dataset for environmental sound classification,” Proceedings of the 23rd ACM international
conference on Multimedia Brisbane, Australia, October, 2015.

Parameters

dataset_path [str] Path to the dataset folder. This is the path to the folder where the complete
dataset will be downloaded, decompressed and handled. It is expected to use a folder name
that represents the dataset unambiguously (e.g. ../datasets/ESCS50).

Examples

To work with ESC10 dataset, just initialize this class with the path to the dataset.

>>> from dcase_models.data.datasets import ESC10
>>> dataset = ESC10('../datasets/ESC50")

Then, you can download the dataset and change the sampling rate.

>>> dataset.download()
>>> dataset.change_sampling_rate (22050)

__init__ (dataset_path)
Init Dataset

Methods
___init__ (dataset_path) Init Dataset
build() Builds the dataset.
change_sampling_rate(hew_sr) Changes the sampling rate of each wav file in au-
dio_path.
check_1if downloaded() Checks if the dataset was downloaded.
check_sampling_rate(sr) Checks if dataset was resampled before.
convert_to_wav([remove_original]) Converts each file in the dataset to wav format.
download([force_download]) Downloads and decompresses the dataset from zen-
odo.
generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.
get_annotations(file_name, features, ...) Returns the annotations of the file in file_path.
get_audio_paths([sr]) Returns paths to the audio folder.
get_basename_wav(filename)
set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.
build()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_ rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path

32

Chapter 7. Data

https://github.com/karolpiczak/ESC-50

DCASE-models

and save the result in the new folder.
Parameters
sr [int] Sampling rate.

check _if downloaded()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling_rate (sr)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted
Parameters
remove_original [bool] Remove original files.

download (force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [“filel.tar.gz’, ‘file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_name, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features

Returns

7.1.

Datasets 33

https://zenodo.org/record/12345/files

DCASE-models

ndarray Annotations of the file file_path Expected output shape: (features.shape[0],
len(self.label_list))

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [‘{{DATASET_PATH }/audio/original’]

get_basename_wav (filename)

set_as_downloaded()
Saves a download.txt file in dataset_path as a downloaded flag.

7.1.5 dcase_models.data.URBAN_SED

class dcase_models.data.URBAN_SED (dataset_path)

Bases: dcase_models.data.dataset_base.Dataset

URBAN-SED dataset.

This class inherits all functionality from Dataset and defines specific attributes and methods for URBAN-SED.
Url: http://urbansed.weebly.com/

J. Salamon, D. MacConnell, M. Cartwright, P. Li, and J. P.Bello. “Scaper: A library for soundscape synthesis
and augmentation”. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics New York,
USA, October 2017.

Parameters

dataset_path [str] Path to the dataset folder. This is the path to the folder where the complete
dataset will be downloaded, decompressed and handled. It is expected to use a folder name
that represents the dataset unambiguously (e.g. ../datasetsfURBAN_SED).

Examples

To work with URBAN_SED dataset, just initialize this class with the path to the dataset.

>>> from dcase_models.data.datasets import URBAN_SED
>>> dataset = URBAN_SED('../datasets/URBAN_SED")

Then, you can download the dataset and change the sampling rate.

>>> dataset.download()
>>> dataset.change_sampling_rate (22050)

__init__ (dataset_path)
Init Dataset

34

Chapter 7. Data

http://urbansed.weebly.com/

DCASE-models

Methods
___init__(dataset_path) Init Dataset
build() Builds the dataset.
change_sampling rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.
check_1if downloaded() Checks if the dataset was downloaded.
check_sampling_rate(sr) Checks if dataset was resampled before.
convert_to_wav([remove_original]) Converts each file in the dataset to wav format.
download([force_download]) Downloads and decompresses the dataset from zen-
odo.
generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.
get_annotations(file_name, features, ...) Returns the annotations of the file in file_path.
get_audio_paths([sr]) Returns paths to the audio folder.
set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.
build()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path
and save the result in the new folder.

Parameters
sr [int] Sampling rate.

check_if downloaded ()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling rate (s7)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted

Parameters

. Datasets 35

DCASE-models

remove_original [bool] Remove original files.

download (force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [‘filel.tar.gz’, ‘file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_name, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features
Returns

ndarray Annotations of the file file_path Expected output shape: (features.shape[O],
len(self.label_list))

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [‘{{DATASET_PATH }/audio/original’]

set_as_downloaded ()
Saves a download.txt file in dataset_path as a downloaded flag.

7.1.6 dcase_models.data.SONYC_UST

class dcase_models.data.SONYC_UST (dataset_path)
Bases: dcase_models.data.dataset_base.Dataset

SONYC-UST dataset.
This class inherits all functionality from Dataset and defines specific attributes and methods for SONYC-UST.
Version: 2.1.0

36 Chapter 7. Data

https://zenodo.org/record/12345/files

DCASE-models

Url: https://zenodo.org/record/3693077

M. Cartwright, et al. “SONYC Urban Sound Tagging (SONYC-UST): A Multilabel Dataset from an Urban
Acoustic Sensor Network”. Proceedings of the Workshop on Detection and Classification of Acoustic Scenes
and Events (DCASE), 2019.

Parameters

dataset_path [str] Path to the dataset folder. This is the path to the folder where the complete
dataset will be downloaded, decompressed and handled. It is expected to use a folder name
that represents the dataset unambiguously (e.g. ../datasets/SONYC_UST).

Examples

To work with SONYC_UST dataset, just initialize this class with the path to the dataset.

>>> from dcase_models.data.datasets import SONYC_UST
>>> dataset = SONYC_UST('../datasets/SONYC_UST'")

Then, you can download the dataset and change the sampling rate.

>>> dataset.download()
>>> dataset.change_sampling_rate (22050)

__init__ (dataset_path)

Init Dataset
Methods
__init__ (dataset_path) Init Dataset
build() Builds the dataset.
change_sampling_rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.
check_1if downloaded() Checks if the dataset was downloaded.
check_sampling rate(sr) Checks if dataset was resampled before.
convert_to_wav([remove_original]) Converts each file in the dataset to wav format.
download([force_download]) Downloads and decompresses the dataset from zen-
odo.
generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.
get_annotat ions(file_name, features, ...) Returns the annotations of the file in file_path.
get_audio_paths([sr]) Returns paths to the audio folder.
set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.
build ()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_ rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path

7.1.

Datasets 37

https://zenodo.org/record/3693077

DCASE-models

and save the result in the new folder.
Parameters
sr [int] Sampling rate.

check _if downloaded()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling_rate (sr)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted
Parameters
remove_original [bool] Remove original files.

download (force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [“filel.tar.gz’, ‘file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_name, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features

Returns

38 Chapter 7. Data

https://zenodo.org/record/12345/files

DCASE-models

ndarray Annotations of the file file_path Expected output shape: (features.shape[0],
len(self.label_list))

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [‘{{DATASET_PATH }/audio/original’]

set_as_downloaded ()
Saves a download.txt file in dataset_path as a downloaded flag.

7.1.7 dcase_models.data.TAUUrbanAcousticScenes2019

class dcase_models.data.TAUUrbanAcousticScenes20109 (dataset_path)
Bases: dcase_models.data.datasets._TAUUrbanAcousticScenes

TAU Urban Acoustic Scenes 2019 dataset.

This class inherits all functionality from Dataset and defines specific attributes and methods for TAU Urban
Acoustic Scenes 2019.

Url: https://zenodo.org/record/2589280

A. Mesaros, T. Heittola, and T. Virtanen. “A multi-devicedataset for urban acoustic scene classification”. Pro-
ceedings of the Detection and Classification of Acoustic Scenes and Events 2018 Workshop (DCASE 2018).
November 2018.

Parameters

dataset_path [str] Path to the dataset folder. This is the path to the folder where the complete
dataset will be downloaded, decompressed and handled. It is expected to use a folder name
that represents the dataset unambiguously (e.g. ../datasets/TAUUrbanAcousticScenes2019).

Examples

To work with TAUUrbanAcousticScenes2019 dataset, just initialize this class with the path to the dataset.

>>> from dcase _models.data.datasets import TAUUrbanAcousticScenes2019
>>> dataset = TAUUrbanAcousticScenes2019 (
'../datasets/TAUUrbanAcousticScenes2019"')

Then, you can download the dataset and change the sampling rate.

>>> dataset.download()
>>> dataset.change_sampling_rate (22050)

__init__ (dataset_path)
Init Dataset

7.1. Datasets 39

https://zenodo.org/record/2589280

DCASE-models

Methods
___init__(dataset_path) Init Dataset
build() Builds the dataset.
change_sampling rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.
check_1if downloaded() Checks if the dataset was downloaded.
check_sampling_rate(sr) Checks if dataset was resampled before.
convert_to_wav([remove_original]) Converts each file in the dataset to wav format.
download([force_download]) Downloads and decompresses the dataset from zen-
odo.
generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.
get_annotations(file_name, features, ...) Returns the annotations of the file in file_path.
get_audio_paths([sr]) Returns paths to the audio folder.
set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.
build()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path
and save the result in the new folder.

Parameters
sr [int] Sampling rate.

check_if downloaded ()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling rate (s7)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted

Parameters

40 Chapter 7. Data

DCASE-models

remove_original [bool] Remove original files.

download (force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [‘filel.tar.gz’, ‘file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_name, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features
Returns

ndarray Annotations of the file file_path Expected output shape: (features.shape[O],
len(self.label_list))

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [‘{{DATASET_PATH }/audio/original’]

set_as_downloaded ()
Saves a download.txt file in dataset_path as a downloaded flag.

7.1.8 dcase_models.data.TAUUrbanAcousticScenes2020Mobile

class dcase_models.data.TAUUrbanAcousticScenes2020Mobile (dataset_path)
Bases: dcase_models.data.datasets._TAUUrbanAcousticScenes

TAU Urban Acoustic Scenes 2019 dataset.

This class inherits all functionality from Dataset and defines specific attributes and methods for TAU Urban
Acoustic Scenes 2020 Mobile.

7.1. Datasets a1

https://zenodo.org/record/12345/files

DCASE-models

Url: https://zenodo.org/record/3819968

T. Heittola, A. Mesaros, and T. Virtanen. “Acoustic sceneclassification in DCASE 2020 challenge: generaliza-
tionacross devices and low complexity solutions”. Proceedings of the Detection and Classification of Acoustic
Scenes and Events 2020 Workshop (DCASE 2020). 2020

Parameters

dataset_path [str] Path to the dataset folder. This is the path to the folder where
the complete dataset will be downloaded, decompressed and handled. It is
expected to use a folder name that represents the dataset unambiguously (e.g.
../datasets/TAUUrbanAcousticScenes2020Mobile).

Examples

To work with TAUUrbanAcousticScenes2020Mobile dataset, just initialize this class with the path to the dataset.

>>> from dcase_models.data.datasets import TAUUrbanAcousticScenes2020Mobile
>>> dataset = TAUUrbanAcousticScenes2020Mobile (
'../datasets/TAUUrbanAcousticScenes2020Mobile")

Then, you can download the dataset and change the sampling rate.

>>> dataset.download()
>>> dataset.change_sampling_rate (22050)

__init__ (dataset_path)

Init Dataset
Methods
___init__(dataset_path) Init Dataset
build() Builds the dataset.
change_sampling rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.
check_1if downloaded() Checks if the dataset was downloaded.
check_sampling_rate(sr) Checks if dataset was resampled before.
convert_to_wav([remove_original]) Converts each file in the dataset to wav format.
download([force_download]) Downloads and decompresses the dataset from zen-
odo.
generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.
get_annotations(file_name, features, ...) Returns the annotations of the file in file_path.
get_audio_paths([sr]) Returns paths to the audio folder.
set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.
build()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_rate (new_sr)

42

Chapter 7. Data

https://zenodo.org/record/3819968

DCASE-models

Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path
and save the result in the new folder.

Parameters
sr [int] Sampling rate.

check_if downloaded()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling rate (sr)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted
Parameters
remove_original [bool] Remove original files.

download (force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [‘filel.tar.gz’, ‘file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_name, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path

time_resolution [float] Time resolution of the features

7.1.

Datasets 43

https://zenodo.org/record/12345/files

DCASE-models

Returns

ndarray Annotations of the file file_path Expected output shape: (features.shape[O],
len(self.label_list))

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [{DATASET_PATH }/audio/original’]

set_as_downloaded()
Saves a download.txt file in dataset_path as a downloaded flag.

7.1.9 dcase_models.data.TUTSoundEvents2017

class dcase_models.data.TUTSoundEvents2017 (dataset_path)
Bases: dcase_models.data.dataset_base.Dataset

TUT Sound Events 2017 dataset.

This class inherits all functionality from Dataset and defines specific attributes and methods for TUT Sound
Events 2017.

Url: https://zenodo.org/record/814831

A. Mesaros et al. DCASE 2017 challenge setup: tasks, datasets and baseline system. Detection and Classifica-
tion of Acoustic Scenes and Events 2017 Workshop (DCASE2017), 85-92. November 2017.

Parameters

dataset_path [str] Path to the dataset folder. This is the path to the folder where the complete
dataset will be downloaded, decompressed and handled. It is expected to use a folder name
that represents the dataset unambiguously (e.g. ../datasets/TUTSoundEvents2017).

Examples

To work with TUTSoundEvents2017 dataset, just initialize this class with the path to the dataset.

>>> from dcase_models.data.datasets import TUTSoundEvents2017
>>> dataset = TUTSoundEvents2017('../datasets/TUTSoundEvents2017")

Then, you can download the dataset and change the sampling rate.

>>> dataset.download()
>>> dataset.change_sampling_rate (22050)

__init__ (dataset_path)
Init Dataset

44 Chapter 7. Data

https://zenodo.org/record/814831

DCASE-models

Methods
___init__(dataset_path) Init Dataset
build() Builds the dataset.
change_sampling rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.
check_1if downloaded() Checks if the dataset was downloaded.
check_sampling_rate(sr) Checks if dataset was resampled before.
convert_to_wav([remove_original]) Converts each file in the dataset to wav format.
download([force_download]) Downloads and decompresses the dataset from zen-
odo.
generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.
get_annotations(file_name, features, ...) Returns the annotations of the file in file_path.
get_audio_paths([sr]) Returns paths to the audio folder.
set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.
build()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path
and save the result in the new folder.

Parameters
sr [int] Sampling rate.

check_if downloaded ()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling rate (s7)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted

Parameters

. Datasets 45

DCASE-models

remove_original [bool] Remove original files.

download (force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [‘filel.tar.gz’, ‘file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_name, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features
Returns

ndarray Annotations of the file file_path Expected output shape: (features.shape[O],
len(self.label_list))

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [‘{{DATASET_PATH }/audio/original’]

set_as_downloaded ()
Saves a download.txt file in dataset_path as a downloaded flag.

7.1.10 dcase_models.data.FSDKaggle2018

class dcase_models.data.FSDKaggle2018 (dataset_path)
Bases: dcase_models.data.dataset_base.Dataset

FSDKaggle2018 dataset.
This class inherits all functionality from Dataset and defines specific attributes and methods for FSDKaggle2018.
Url: https://zenodo.org/record/2552860

46 Chapter 7. Data

https://zenodo.org/record/12345/files
https://zenodo.org/record/2552860

DCASE-models

Eduardo Fonseca et al. “General-purpose Tagging of Freesound Audio with AudioSet Labels: Task Description,
Dataset, and Baseline”. Proceedings of the DCASE 2018 Workshop. 2018.

Parameters

dataset_path [str] Path to the dataset folder. This is the path to the folder where the complete
dataset will be downloaded, decompressed and handled. It is expected to use a folder name
that represents the dataset unambiguously (e.g. ../datasets/FSDKaggle2018).

Examples

To work with FSDKaggle2018 dataset, just initialize this class with the path to the dataset.

>>> from dcase_models.data.datasets import FSDKaggle2018
>>> dataset = FSDKaggle2018('../datasets/FSDKaggle2018")

Then, you can download the dataset and change the sampling rate.

>>> dataset.download()
>>> dataset.change_sampling_rate (22050)

__init__ (dataset_path)

Init Dataset
Methods
___init__(dataset_path) Init Dataset
build() Builds the dataset.
change_sampling rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.
check_1if downloaded() Checks if the dataset was downloaded.
check_sampling_rate(sr) Checks if dataset was resampled before.
convert_to_wav([remove_original]) Converts each file in the dataset to wav format.
download([force_download]) Downloads and decompresses the dataset from zen-
odo.
generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.
get_annotations(file_name, features, ...) Returns the annotations of the file in file_path.
get_audio_paths([sr]) Returns paths to the audio folder.
set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.
build()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path
and save the result in the new folder.

Parameters

. Datasets a7

DCASE-models

sr [int] Sampling rate.

check_if downloaded ()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling rate (sr)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted
Parameters
remove_original [bool] Remove original files.

download (force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [‘filel.tar.gz’, ‘file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_name, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features
Returns

ndarray Annotations of the file file_path Expected output shape: (features.shape[O],
len(self.label _list))

48 Chapter 7. Data

https://zenodo.org/record/12345/files

DCASE-models

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [{DATASET_PATH }/audio/original’]

set_as_downloaded ()
Saves a download.txt file in dataset_path as a downloaded flag.

7.1.11 dcase_models.data.MAVD

class dcase_models.data.MAVD (dataset_path)
Bases: dcase_models.data.dataset_base.Dataset

MAVD-traffic dataset.
This class inherits all functionality from Dataset and defines specific attributes and methods for MAVD-traffic.
Url: https://zenodo.org/record/3338727

P. Zinemanas, P. Cancela, and M. Rocamora. “MAVD: a dataset for sound event detection in urban environ-
ments” Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019 Workshop (DCASE
2019). October, 2019.

Parameters

dataset_path [str] Path to the dataset folder. This is the path to the folder where the complete
dataset will be downloaded, decompressed and handled. It is expected to use a folder name
that represents the dataset unambiguously (e.g. ../datasets/MAVD).

Examples

To work with MAVD dataset, just initialize this class with the path to the dataset.

>>> from dcase_models.data.datasets import MAVD
>>> dataset = MAVD('../datasets/MAVD'")

Then, you can download the dataset and change the sampling rate.

>>> dataset.download()
>>> dataset.change_sampling_rate (22050)

init__ (dataset_path)
Init Dataset

Methods

7.1. Datasets 49

https://zenodo.org/record/3338727

DCASE-models

___init__ (dataset_path) Init Dataset

build() Builds the dataset.

change_sampling_rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.

check_1if downloaded() Checks if the dataset was downloaded.

check_sampling_rate(sr) Checks if dataset was resampled before.

convert_to_wav([remove_original]) Converts each file in the dataset to wav format.

down1oad([force_download]) Downloads and decompresses the dataset from zen-
odo.

generate file 1ists() Creates file_lists, a dict that includes a list of files per
fold.

get_annotations(file_name, features, ...) Returns the annotations of the file in file_path.

get_audio_paths([sr]) Returns paths to the audio folder.

set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.

build()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path
and save the result in the new folder.

Parameters
sr [int] Sampling rate.

check_if downloaded()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.
Further checks in the future.

check_sampling rate (sr)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted
Parameters

remove_original [bool] Remove original files.

50 Chapter 7. Data

DCASE-models

download (force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [‘filel.tar.gz’, “file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Creates file_lists, a dict that includes a list of files per fold.

Each dataset has a different way of organizing the files. This function defines the dataset structure.

get_annotations (file_name, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features
Returns

ndarray Annotations of the file file_path Expected output shape: (features.shape[0],
len(self.label_list))

get_audio_paths (sr=None)
Returns paths to the audio folder.

If sr is None, return audio_path. Else, return {audio_path}{sr}.
Parameters
sr [int or None, optional] Sampling rate.
Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. Important when use Aug-
mentedDataset. e.g. [{DATASET_PATH }/audio/original’]

set_as_downloaded ()
Saves a download.txt file in dataset_path as a downloaded flag.

7.2 Features

Features are implemented as specializations of the base class FeatureExtractor.

FeatureExtractor([sequence_time, ...]) Abstract base class for feature extraction.
Spectrogram([sequence_time, ...]) Spectrogram feature extractor.
MelSpectrogram([sequence_time, ...]) MelSpectrogram feature extractor.

Continued on next page

7.2. Features 51

https://zenodo.org/record/12345/files

DCASE-models

Table 13 — continued from previous page

Openl3([sequence_time, sequence_hop_time, ...]) Openl3 feature extractor.
RawAudio([sequence_time, sequence_hop_time, ...]) RawAudio feature extractor.
FramesAudio([sequence_time, ...]) FramesAudio feature extractor.

7.2.1 dcase_models.data.FeatureExtractor

class dcase_models.data.FeatureExtractor (sequence_time=1.0, sequence_hop_time=0.5,
audio_win=1024, audio_hop=680, sr=22050,
**kwargs)

Bases: object

Abstract base class for feature extraction.

Includes methods to load audio files, calculate features and prepare sequences.

Inherit this class to define custom features (e.g. features.MelSpectrogram, features.Openl3).
Parameters

sequence_time [float, default=1.0] Length (in seconds) of the feature representation analysis
windows (model’s input).

sequence_hop_time [float, default=0.5] Hop time (in seconds) of the feature representation
analysis windows.

audio_win [int, default=1024] Window length (in samples) for the short-time audio processing
(e.g short-time Fourier Transform (STFT))

audio_hop [int, default=680] Hop length (in samples) for the short-time audio processing (e.g
short-time Fourier Transform (STFT))

sr [int, default=22050] Sampling rate of the audio signals. If the original audio is not sampled
at this rate, it is re-sampled before feature extraction.

Examples

To create a new feature representation, it is necessary to define a class that inherits from FeatureExtractor. It is
required to define the calculate() method.:

from dcase_models.data.feature_extractor import FeatureExtractor
class Chroma (FeatureExtractor) :
def _ _init__ (self, sequence_time=1.0, sequence_hop_time=0.5,
audio_win=1024, audio_hop=512, sr=44100,
Add here your custom parameters
n_fft=1024, n_chroma=12) :
Don't forget this line
super () .__init__ (sequence_time=sequence_time,
sequence_hop_time=sequence_hop_time,
audio_win=audio_win,
audio_hop=audio_hop, sr=sr)

self.sequence_samples = int (librosa.core.frames_to_samples (
self.sequence_frames,
self.audio_hop,
n_fft=self.n_fft

))

def calculate(self, file_name):

(continues on next page)

52 Chapter 7. Data

DCASE-models

(continued from previous page)

Load the audio signal
audio =
Pad audio signal
audio =
audio,
audio.shape[0]
axis=0, mode='constant'
)
Get the chroma features
chroma =

Convert to sequences
chroma =
chroma =

)

return chroma

librosa.util.fix_length (

Here define your function to calculate the chroma features

self.load_audio (file_name)

+ self.sequence_samples,

librosa.feature.chroma_stft (y=audio,

sr=self.sr,
n_fft=self.n_fft,
hop_length=audio_hop,
win_length=audio_win

)

np.ascontiguousarray (chroma)

librosa.util. frame (chroma,
self.sequence_frames,
self.sequence_hop,
axis=0

Attributes

sequence_frames [int] Number of frames equivalent to the sequence_time.

sequence_hop [int] Number of frames equivalent to the sequence_hop_time.

__init__ (sequence_time=1.0,
sr=22050, **kwargs)
Initialize the FeatureExtractor

Methods

sequence_hop_time=0.5,

audio_win=1024, audio_hop=680,

___init__ ([sequence_time,

D

sequence_hop_time,

Initialize the FeatureExtractor

calculate(file_name)

Loads an audio file and calculates features

check_1f extracted(dataset)

Checks if the features of each file in dataset was cal-
culated.

check_1if_extracted_path(path)

Checks if the features saved in path were calculated.

convert_to_sequences(audio_representation)

ext ract(dataset)

Extracts features for each file in dataset.

get_ features_path(dataset)

Returns the path to the features folder.

get_shape([length_sec])

Calls calculate() with a dummy signal of length
length_sec and returns the shape of the feature rep-
resentation.

load_audio(file_name[, mono, ...])

Loads an audio signal and converts it to mono if
needed

pad_audio(audio)

set_as_extracted(path)

Saves a json file with self.__dict__.

7.2. Features

53

DCASE-models

calculate (file_name)
Loads an audio file and calculates features

Parameters
file_name [str] Path to the audio file
Returns
ndarray feature representation of the audio signal

check_if extracted (dataset)
Checks if the features of each file in dataset was calculated.

Calls check_if_extracted_path for each path in the dataset.
Parameters
path [str] Path to the features folder
Returns
bool True if the features were already extracted.

check_if extracted_path (path)
Checks if the features saved in path were calculated.

Compare if the features were calculated with the same parameters of self.__dict__.
Parameters
path [str] Path to the features folder
Returns
bool True if the features were already extracted.
convert_to_sequences (audio_representation)

extract (dataset)
Extracts features for each file in dataset.

Call calculate() for each file in dataset and save the result into the features path.
Parameters
dataset [Dataset] Instance of the dataset.

get_features_path (dataset)
Returns the path to the features folder.

Parameters

dataset [Dataset] Instance of the dataset.
Returns

features_path [str] Path to the features folder.

get_shape (length_sec=10.0)
Calls calculate() with a dummy signal of length length_sec and returns the shape of the feature represen-
tation.

Parameters
length_sec [float] Duration in seconds of the test signal

Returns

54 Chapter 7. Data

DCASE-models

tuple Shape of the feature representation

load_audio (file_name, mono=True, change_sampling_rate=True)
Loads an audio signal and converts it to mono if needed

Parameters
file_name [str] Path to the audio file
mono [bool] if True, only returns left channel
change_sampling_rate [bool] if True, the audio signal is re-sampled to self.sr
Returns
array audio signal
pad_audio (audio)

set_as_extracted (path)
Saves a json file with self.__dict__.

Useful for checking if the features files were calculated with same parameters.
Parameters

path [str] Path to the JSON file

7.2.2 dcase_models.data.Spectrogram

class dcase_models.data.Spectrogram (sequence_time=1.0, sequence_hop_time=0.5, au-
dio_win=1024, audio_hop=680, sr=22050, n_fft=1024,

pad_mode="reflect’)
Bases: dcase_models.data.feature_extractor.FeatureExtractor

Spectrogram feature extractor.

Extracts the log-scaled spectrogram of the audio signals. The spectrogram is calculated over the whole audio
signal and then is separated in overlapped sequences (frames)

Parameters

n_fft [int, default=1024] Number of samples used for FFT calculation. Refer to librosa.core.stft
for further information.

pad_mode [str or None, default="reflect’] Mode of padding applied to the audio signal. This
argument is passed to librosa.util.fix_length for padding the signal. If pad_mode is None,
no padding is applied.

See also:

FeatureExtractor FeatureExtractor base class.
MelSpectrogram MelSpectrogram feature extractor.
Notes

Based in librosa.core.stft function.

7.2. Features 55

DCASE-models

Examples

Extract features of a given file

>>> from dcase_models.data.features import Spectrogram
>>> from dcase_models.util.files import example_audio_file
>>> features = Spectrogram()
>>> features_shape = features.get_shape()
>>> print (features_shape)
(21, 32, 513)
>>> file_name = example_audio_file()
>>> spectrogram = features.calculate(file_name)
>>> print (spectrogram.shape)
(3, 32, 513)

Extract features for each file in a given dataset.

>>> from dcase_models.data.datasets import ESC50
>>> dataset = ESC50('../datasets/ESC50")
>>> features.extract (dataset)

__init__ (sequence_time=1.0, sequence_hop_time=0.5, audio_win=1024, audio_hop=680,
sr=22050, n_{fft=1024, pad_mode="reflect’)
Initialize the FeatureExtractor

Methods

__init__ ([sequence_time, sequence_hop_time, Initialize the FeatureExtractor

)|

calculate(file_name) Loads an audio file and calculates features

check_1f extracted(dataset) Checks if the features of each file in dataset was cal-
culated.

check_1if_extracted_path(path) Checks if the features saved in path were calculated.

convert_to_sequences(audio_representation)

ext ract(dataset) Extracts features for each file in dataset.

get_ features_path(dataset) Returns the path to the features folder.

get_shape([length_sec]) Calls calculate() with a dummy signal of length
length_sec and returns the shape of the feature rep-
resentation.

load_audio(file_name[, mono, ...]) Loads an audio signal and converts it to mono if
needed

pad_audio(audio)

set_as_extracted(path) Saves a json file with self.__dict__.

calculate (file_name)
Loads an audio file and calculates features

Parameters
file_name [str] Path to the audio file
Returns
ndarray feature representation of the audio signal

check_if_ extracted (dataset)

56 Chapter 7. Data

DCASE-models

Checks if the features of each file in dataset was calculated.
Calls check_if_extracted_path for each path in the dataset.
Parameters
path [str] Path to the features folder
Returns
bool True if the features were already extracted.

check_if extracted_path (path)
Checks if the features saved in path were calculated.

Compare if the features were calculated with the same parameters of self.__dict__.
Parameters
path [str] Path to the features folder
Returns
bool True if the features were already extracted.
convert_to_sequences (audio_representation)

extract (dataset)
Extracts features for each file in dataset.

Call calculate() for each file in dataset and save the result into the features path.
Parameters
dataset [Dataset] Instance of the dataset.

get_features_path (dataset)
Returns the path to the features folder.

Parameters

dataset [Dataset] Instance of the dataset.
Returns

features_path [str] Path to the features folder.

get_shape (length_sec=10.0)
Calls calculate() with a dummy signal of length length_sec and returns the shape of the feature represen-
tation.

Parameters

length_sec [float] Duration in seconds of the test signal
Returns

tuple Shape of the feature representation

load_audio (file_name, mono=True, change_sampling_rate=True)
Loads an audio signal and converts it to mono if needed

Parameters
file_name [str] Path to the audio file
mono [bool] if True, only returns left channel

change_sampling_rate [bool] if True, the audio signal is re-sampled to self.sr

7.2.

Features 57

DCASE-models

Returns
array audio signal
pad_audio (audio)

set_as_extracted (path)
Saves a json file with self.__dict__.

Useful for checking if the features files were calculated with same parameters.
Parameters

path [str] Path to the JSON file

7.2.3 dcase_models.data.MelSpectrogram

class dcase_models.data.MelSpectrogram (sequence_time=1.0, sequence_hop_time=0.5,
audio_win=1024, audio_hop=680, sr=22050,
n_fft=1024, mel_bands=64, pad_mode="reflect’,

*kkwargs)
Bases: dcase_models.data.feature_extractor.FeatureExtractor

MelSpectrogram feature extractor.

Extracts the log-scaled mel-spectrogram of the audio signals. The mel-spectrogram is calculated over the whole
audio signal and then is separated in overlapped sequences (frames).

Parameters

n_fft [int, default=1024] Number of samples used for FFT calculation. Refer to librosa.core.stft
for further information.

mel_bands [int, default=64] Number of mel bands.

pad_mode [str or None, default="reflect’] Mode of padding applied to the audio signal. This
argument is passed to librosa.util.fix_length for padding the signal. If pad_mode is None,
no padding is applied.

kwargs Additional keyword arguments to librosa.filters.mel.

See also:

FeatureExtractor FeatureExtractor base class

Spectrogram Spectrogram features

Notes

Based in librosa.core.stft and librosa.filters.mel functions.

Examples

Extract features of a given file.

>>> from dcase_models.data.features import MelSpectrogram
>>> from dcase_models.util.files import example_audio_file
>>> features = MelSpectrogram/()

>>> features_shape = features.get_shape ()

(continues on next page)

58 Chapter 7. Data

DCASE-models

(continued from previous page)

>>> print (features_shape)
(21, 32, 64)
>>> file_name = example_audio_file()

>>> print (mel_spectrogram.shape)
(3, 32, 64)

>>> mel_spectrogram = features.calculate(file_name)

Extract features for each file in a given dataset.

>>> from dcase_models.data.datasets import ESC50
>>> dataset = ESC50('../datasets/ESC50")
>>> features.extract (dataset)

__init__ (sequence_time=1.0, sequence_hop_time=0.5,

Initialize the FeatureExtractor

Methods

audio_win=1024,
sr=22050, n_{fft=1024, mel_bands=64, pad_mode="reflect’, **kwargs)

audio_hop=680,

__init__ ([sequence_time, sequence_hop_time, Initialize the FeatureExtractor

)

calculate(file_name) Loads an audio file and calculates features

check_1if extracted(dataset) Checks if the features of each file in dataset was cal-
culated.

check_1if extracted_path(path) Checks if the features saved in path were calculated.

convert_to_sequences(audio_representation)

ext ract(dataset) Extracts features for each file in dataset.

get_features_path(dataset) Returns the path to the features folder.

get_shape([length_sec]) Calls calculate() with a dummy signal of length
length_sec and returns the shape of the feature rep-
resentation.

load_audio(file_name[, mono,...]) Loads an audio signal and converts it to mono if
needed

pad_audio(audio)

set_as_extracted(path) Saves a json file with self.__dict__.

calculate (file_name)
Loads an audio file and calculates features

Parameters
file_name [str] Path to the audio file
Returns
ndarray feature representation of the audio signal

check_if extracted (dataset)
Checks if the features of each file in dataset was calculated.

Calls check_if_extracted_path for each path in the dataset.
Parameters

path [str] Path to the features folder

7.2.

Features

59

DCASE-models

Returns
bool True if the features were already extracted.

check_if extracted path (path)
Checks if the features saved in path were calculated.

Compare if the features were calculated with the same parameters of self.__dict__.
Parameters
path [str] Path to the features folder
Returns
bool True if the features were already extracted.
convert_to_sequences (audio_representation)

extract (dataset)
Extracts features for each file in dataset.

Call calculate() for each file in dataset and save the result into the features path.
Parameters
dataset [Dataset] Instance of the dataset.

get_features_path (dataset)
Returns the path to the features folder.

Parameters

dataset [Dataset] Instance of the dataset.
Returns

features_path [str] Path to the features folder.

get_shape (length_sec=10.0)
Calls calculate() with a dummy signal of length length_sec and returns the shape of the feature represen-
tation.

Parameters

length_sec [float] Duration in seconds of the test signal
Returns

tuple Shape of the feature representation

load_audio (file_name, mono=True, change_sampling_rate=True)
Loads an audio signal and converts it to mono if needed

Parameters

file_name [str] Path to the audio file

mono [bool] if True, only returns left channel

change_sampling_rate [bool] if True, the audio signal is re-sampled to self.sr
Returns

array audio signal

pad_audio (audio)

60 Chapter 7. Data

DCASE-models

set_as_extracted (path)
Saves a json file with self.__dict__.

Useful for checking if the features files were calculated with same parameters.
Parameters

path [str] Path to the JSON file

7.2.4 dcase_models.data.Openli3

class dcase_models.data.Openl3 (sequence_time=1.0, sequence_hop_time=0.5, audio_win=1024,
audio_hop=680, sr=22050, content_type="eny’, in-

put_repr="mel256°, embedding_size=512)
Bases: dcase_models.data.feature_extractor.FeatureExtractor

Openl3 feature extractor.
Based in openl3 library.
Parameters

content_type [{‘music’ or ‘env’}, default="env’] Type of content used to train the embedding
model. Refer to openl3.core.get_audio_embedding.

input_repr [{‘linear’, ‘mell128’, or ‘mel256’}] Spectrogram representation used for model. Re-
fer to openl3.core.get_audio_embedding.

embedding_size [{6144 or 512}, default=512] Embedding dimensionality. Refer to
openl3.core.get_audio_embedding.

pad_mode [str or None, default="reflect’] Mode of padding applied to the audio signal. This
argument is passed to librosa.util.fix_length for padding the signal. If pad_mode is None,
no padding is applied.

See also:

FeatureExtractor FeatureExtractor base class
Spectrogram Spectrogram features

Examples

Extract features of a given file.

>>> from dcase_models.data.features import Openl3
>>> from dcase_models.util.files import example_audio_file
>>> features = Openl3()
>>> features_shape = features.get_shape()
>>> print (features_shape)
(20, 512)
>>> file_name = example_audio_file()
>>> mel_spectrogram = features.calculate(file_name)
>>> print (mel_spectrogram.shape)
(3, 512)

Extract features for each file in a given dataset.

7.2. Features 61

DCASE-models

>>> from dcase_models.data.datasets import ESC50
>>> dataset = ESC50('../datasets/ESC50")
>>> features.extract (dataset)

__init__ (sequence_time=1.0, sequence_hop_time=0.5, audio_win=1024,

Initialize the FeatureExtractor

Methods

audio_hop=680,
sr=22050, content_type="env’, input_repr="mel256°, embedding_size=512)

__init__ ([sequence_time, sequence_hop_time, Initialize the FeatureExtractor

)

calculate(file_name) Loads an audio file and calculates features

check_1f extracted(dataset) Checks if the features of each file in dataset was cal-
culated.

check_1if extracted_ path(path) Checks if the features saved in path were calculated.

convert_to_sequences(audio_representation)

extract(dataset) Extracts features for each file in dataset.

get_features_path(dataset) Returns the path to the features folder.

get_shape([length_sec]) Calls calculate() with a dummy signal of length
length_sec and returns the shape of the feature rep-
resentation.

load_audio(file_name[, mono, ...]) Loads an audio signal and converts it to mono if
needed

pad_audio(audio)

set_as_extracted(path) Saves a json file with self.__dict__.

calculate (file_name)
Loads an audio file and calculates features

Parameters
file_name [str] Path to the audio file
Returns
ndarray feature representation of the audio signal

check_ if extracted (dataset)
Checks if the features of each file in dataset was calculated.

Calls check_if_extracted_path for each path in the dataset.
Parameters
path [str] Path to the features folder
Returns
bool True if the features were already extracted.

check_if extracted_path (path)
Checks if the features saved in path were calculated.

Compare if the features were calculated with the same parameters of self.__dict__.
Parameters

path [str] Path to the features folder

62

Chapter 7. Data

DCASE-models

Returns
bool True if the features were already extracted.
convert_to_sequences (audio_representation)

extract (dataset)
Extracts features for each file in dataset.

Call calculate() for each file in dataset and save the result into the features path.
Parameters
dataset [Dataset] Instance of the dataset.

get_features_path (dataset)
Returns the path to the features folder.

Parameters

dataset [Dataset] Instance of the dataset.
Returns

features_path [str] Path to the features folder.

get_shape (length_sec=10.0)
Calls calculate() with a dummy signal of length length_sec and returns the shape of the feature represen-
tation.

Parameters

length_sec [float] Duration in seconds of the test signal
Returns

tuple Shape of the feature representation

load_audio (file_name, mono=True, change_sampling_rate=True)
Loads an audio signal and converts it to mono if needed

Parameters
file_name [str] Path to the audio file
mono [bool] if True, only returns left channel
change_sampling_rate [bool] if True, the audio signal is re-sampled to self.sr
Returns
array audio signal
pad_audio (audio)

set_as_extracted (path)
Saves a json file with self.__dict__.

Useful for checking if the features files were calculated with same parameters.
Parameters

path [str] Path to the JSON file

7.2.

Features 63

DCASE-models

7.2.5 dcase_models.data.RawAudio

class dcase_models.data.RawAudio (sequence_time=1.0, sequence_hop_time=0.5,
audio_win=1024, audio_hop=680, sr=22050,

pad_mode="reflect’)
Bases: dcase_models.data.feature_extractor.FeatureExtractor

RawAudio feature extractor.
Load the audio signal and create sequences (overlapped windows)
Parameters

pad_mode [str or None, default="reflect’] Mode of padding applied to the audio signal. This
argument is passed to librosa.util.fix_length for padding the signal. If pad_mode is None,
no padding is applied.

__init__ (sequence_time=1.0, sequence_hop_time=0.5, audio_win=1024, audio_hop=680,

sr=22050, pad_mode="reflect’)
Initialize the FeatureExtractor

Methods

__init__ ([sequence_time, sequence_hop_time, Initialize the FeatureExtractor

)

calculate(file_name) Loads an audio file and calculates features

check_1f extracted(dataset) Checks if the features of each file in dataset was cal-
culated.

check_1if extracted_ path(path) Checks if the features saved in path were calculated.

convert_to_sequences(audio_representation)

extract(dataset) Extracts features for each file in dataset.

get_features_path(dataset) Returns the path to the features folder.

get_shape([length_sec]) Calls calculate() with a dummy signal of length
length_sec and returns the shape of the feature rep-
resentation.

load_audio(file_name[, mono, ...]) Loads an audio signal and converts it to mono if
needed

pad_audio(audio)

set_as_extracted(path) Saves a json file with self.__dict__.

calculate (file_name)
Loads an audio file and calculates features

Parameters
file_name [str] Path to the audio file
Returns
ndarray feature representation of the audio signal

check_ if extracted (dataset)
Checks if the features of each file in dataset was calculated.

Calls check_if_extracted_path for each path in the dataset.
Parameters

path [str] Path to the features folder

64 Chapter 7. Data

DCASE-models

Returns
bool True if the features were already extracted.

check_if extracted path (path)
Checks if the features saved in path were calculated.

Compare if the features were calculated with the same parameters of self.__dict__.
Parameters
path [str] Path to the features folder
Returns
bool True if the features were already extracted.
convert_to_sequences (audio_representation)

extract (dataset)
Extracts features for each file in dataset.

Call calculate() for each file in dataset and save the result into the features path.
Parameters
dataset [Dataset] Instance of the dataset.

get_features_path (dataset)
Returns the path to the features folder.

Parameters

dataset [Dataset] Instance of the dataset.
Returns

features_path [str] Path to the features folder.

get_shape (length_sec=10.0)
Calls calculate() with a dummy signal of length length_sec and returns the shape of the feature represen-
tation.

Parameters

length_sec [float] Duration in seconds of the test signal
Returns

tuple Shape of the feature representation

load_audio (file_name, mono=True, change_sampling_rate=True)
Loads an audio signal and converts it to mono if needed

Parameters

file_name [str] Path to the audio file

mono [bool] if True, only returns left channel

change_sampling_rate [bool] if True, the audio signal is re-sampled to self.sr
Returns

array audio signal

pad_audio (audio)

7.2.

Features 65

DCASE-models

set_as_extracted (path)
Saves a json file with self.__dict__.

Useful for checking if the features files were calculated with same parameters.
Parameters

path [str] Path to the JSON file

7.2.6 dcase_models.data.FramesAudio

class dcase_models.data.FramesAudio (sequence_time=1.0, sequence_hop_time=0.5, au-
dio_win=1024, audio_hop=680, sr=22050, n_fft=1024,

pad_mode="reflect’)
Bases: dcase_models.data.feature_extractor.FeatureExtractor

FramesAudio feature extractor.
Load the audio signal, convert it into time-short frames, and create sequences (overlapped windows).
Parameters

pad_mode [str or None, default="reflect’] Mode of padding applied to the audio signal. This
argument is passed to librosa.util.fix_length for padding the signal. If pad_mode is None,
no padding is applied.

__init__ (sequence_time=1.0, sequence_hop_time=0.5, audio_win=1024, audio_hop=680,

sr=22050, n_{fft=1024, pad_mode="reflect’)
Initialize the FeatureExtractor

Methods

__init__ ([sequence_time, sequence_hop_time, Initialize the FeatureExtractor

)

calculate(file_name) Loads an audio file and calculates features

check_1f extracted(dataset) Checks if the features of each file in dataset was cal-
culated.

check_1f extracted_ path(path) Checks if the features saved in path were calculated.

convert_to_sequences(audio_representation)

ext ract(dataset) Extracts features for each file in dataset.

get_features_path(dataset) Returns the path to the features folder.

get_shape([length_sec]) Calls calculate() with a dummy signal of length
length_sec and returns the shape of the feature rep-
resentation.

load_audio(file_name[, mono,...]) Loads an audio signal and converts it to mono if
needed

pad_audio(audio)

set_as_extracted(path) Saves a json file with self.__dict__.

calculate (file_name)
Loads an audio file and calculates features

Parameters
file_name [str] Path to the audio file

Returns

66 Chapter 7. Data

DCASE-models

ndarray feature representation of the audio signal

check_if_ extracted (dataset)
Checks if the features of each file in dataset was calculated.

Calls check_if_extracted_path for each path in the dataset.
Parameters
path [str] Path to the features folder
Returns
bool True if the features were already extracted.

check_if extracted_path (path)
Checks if the features saved in path were calculated.

Compare if the features were calculated with the same parameters of self.__dict__.
Parameters
path [str] Path to the features folder
Returns
bool True if the features were already extracted.
convert_to_sequences (audio_representation)

extract (dataset)
Extracts features for each file in dataset.

Call calculate() for each file in dataset and save the result into the features path.
Parameters
dataset [Dataset] Instance of the dataset.

get_features_path (dataset)
Returns the path to the features folder.

Parameters

dataset [Dataset] Instance of the dataset.
Returns

features_path [str] Path to the features folder.

get_shape (length_sec=10.0)
Calls calculate() with a dummy signal of length length_sec and returns the shape of the feature represen-
tation.

Parameters

length_sec [float] Duration in seconds of the test signal
Returns

tuple Shape of the feature representation

load_audio (file_name, mono=True, change_sampling_rate=True)
Loads an audio signal and converts it to mono if needed

Parameters

file_name [str] Path to the audio file

7.2.

Features 67

DCASE-models

mono [bool] if True, only returns left channel
change_sampling_rate [bool] if True, the audio signal is re-sampled to self.sr
Returns
array audio signal
pad_audio (audio)

set_as_extracted (path)
Saves a json file with self.__dict__.

Useful for checking if the features files were calculated with same parameters.
Parameters

path [str] Path to the JSON file

7.3 Augmentation

AugmentedDataset(dataset, sr, augmentations_list) Class that manage data augmentation.
WhiteNoise(snr) Implements white noise augmentation.

7.3.1 dcase_models.data.AugmentedDataset

class dcase_models.data.AugmentedDataset (dataset, sr, augmentations_list)
Bases: dcase_models.data.dataset_base.Dataset
Class that manage data augmentation.

Basically, it takes an instance of Dataset and generates an augmented one. Includes methods to generate data
augmented versions of the audio files in an existing Dataset.

Parameters
dataset [Dataset] Instance of Dataset to be augmented.

augmentations_list [list] List of augmentation types and their parameters. Dict of form:
[{‘type’ : aug_type, ‘paraml1’: paraml ...} ...]. e.g.:

[
{'"type': 'pitch_shift', 'n_semitones': -1},
{'type': 'time_stretching', 'factor': 1.05}

sr [int] Sampling rate

Examples

Define an instance of UrbanSound8k and convert it into an augmented instance of the dataset. Note that the
actual augmentation is performed when process() method is called.

>>> from dcase_models.data.datasets import UrbanSound8k

>>> from dcase_models.data.data_augmentation import AugmentedDataset
>>> dataset = UrbanSound8k('../datasets/UrbanSound8K")

>>> augmentations = [

(continues on next page)

68 Chapter 7. Data

DCASE-models

(continued from previous page)

{"type": "pitch_shift", "n_semitones": -1},
{"type": "time_stretching", "factor": 1.05},
{"type": "white_noise", "snr": 60}

]
>>> aug_dataset = AugmentedDataset (dataset, augmentations)
>>> aug_dataset.process()

__init__ (dataset, sr, augmentations_list)
Initialize the AugmentedDataset.

Initialize sox Transformers for each type of augmentation.

Methods
___init__ (dataset, sr, augmentations_list) Initialize the AugmentedDataset.
build() Builds the dataset.
change_sampling rate(new_sr) Changes the sampling rate of each wav file in au-
dio_path.
check_1if downloaded() Checks if the dataset was downloaded.
check_sampling rate(sr) Checks if dataset was resampled before.
convert_to_wav([remove_original]) Converts each file in the dataset to wav format.
download(zenodo_url, zenodo_files], ...]) Downloads and decompresses the dataset from zen-
odo.
generate file 1ists() Create self.file_lists, a dict that includes a list of files
per fold.
get_annotat ions(file_path, features, ...) Returns the annotations of the file in file_path.
get_audio_paths([sr]) Returns a list of paths to the folders that include the
dataset augmented files.
process() Generate augmentated data for each file in dataset.
set_as_downloaded() Saves a download.txt file in dataset_path as a down-
loaded flag.
build ()

Builds the dataset.

Define specific attributes of the dataset. It’s mandatory to define audio_path, fold_list and label_list. Other
attributes may be defined here (url, authors, etc.).

change_sampling_ rate (new_sr)
Changes the sampling rate of each wav file in audio_path.

Creates a new folder named audio_path{new_sr} (i.e audio22050) and converts each wav file in audio_path
and save the result in the new folder.

Parameters
sr [int] Sampling rate.

check_ if downloaded ()
Checks if the dataset was downloaded.

Just checks if exists download.txt file.

Further checks in the future.

7.3.

Augmentation 69

DCASE-models

check_sampling_rate (sr)
Checks if dataset was resampled before.

For now, only checks if the folder {audio_path}{sr} exists and each wav file present in audio_path is also
present in {audio_path}{sr}.

Parameters
sr [int] Sampling rate.
Returns
bool True if the dataset was resampled before.

convert_to_wav (remove_original=False)
Converts each file in the dataset to wav format.

If remove_original is False, the original files will be deleted
Parameters
remove_original [bool] Remove original files.

download (zenodo_url, zenodo_files, force_download=False)
Downloads and decompresses the dataset from zenodo.

Parameters
zenodo_url [str] URL with the zenodo files. e.g. ‘https://zenodo.org/record/12345/files’
zenodo_files [list of str] List of files. e.g. [‘filel.tar.gz’, ‘file2.tar.gz’, ‘file3.tar.gz’]
force_download [bool] If True, download the dataset even if was downloaded before.
Returns
bool True if the downloading process was successful.

generate_file_lists()
Create self file_lists, a dict that includes a list of files per fold.

Just call dataset.generate_file_lists() and copy the attribute.

get_annotations (file_path, features, time_resolution)
Returns the annotations of the file in file_path.

Parameters
file_path [str] Path to the file
features [ndarray] nD array with the features of file_path
time_resolution [float] Time resolution of the features
Returns

ndarray Annotations of the file file_path Expected output shape: (features.shape[O],
len(self .label_list))

get_audio_paths (sr=None)
Returns a list of paths to the folders that include the dataset augmented files.

The folder of each augmentation is defined using its name and parameter values.
e.g. {DATASET_PATH }/audio/pitch_shift_1 where 1 is the ‘n_semitones’ parameter.

Parameters

70 Chapter 7. Data

https://zenodo.org/record/12345/files

DCASE-models

sr [int or None, optional] Sampling rate (optional). We keep this parameter to keep compat-
ibility with Dataset.get_audio_paths() method.

Returns
audio_path [str] Path to the root audio folder. e.g. DATASET_PATH/audio

subfolders [list of str] List of subfolders include in audio folder. e.g.:

' /audio/original',
! /audio/pitch_shift_1",
! /audio/time_stretching_1.1",

process ()
Generate augmentated data for each file in dataset.

Replicate the folder structure of { DATASET_PATH }/audio/original into the folder of each augmentation
folder.

set_as_downloaded ()
Saves a download.txt file in dataset_path as a downloaded flag.

7.3.2 dcase_models.data.WhiteNoise
class dcase_models.data.WhiteNoise (snr)
Bases: object
Implements white noise augmentation.
The structure is similar to sox.Transformer in order to keep compatibility with sox.
Parameters
snr [float] Signal to noise ratio.

__init_ (snr)
Initialize the white noise.

Methods
__init__(snr) Initialize the white noise.
build(file_origin, file_destination) Add noise to the file_origin and save the result in

file_destination.

build (file_origin, file_destination)
Add noise to the file_origin and save the result in file_destination.

Parameters
file_origin [str] Path to the source file.

file_destination [str] Path to the destination file.

7.3. Augmentation 7

DCASE-models

7.4 DataGenerator

DataGenerator(dataset, inputs, folds[, ...]) Includes methods to load features files from DCASE
datasets.

KerasDataGenerator(data_generator)

7.4.1 dcase_models.data.DataGenerator

class dcase_models.data.DataGenerator (dataset, inputs, folds, outputs=’annotations’,
batch_size=32, shuffle=True, train=True,

scaler=None, scaler_outputs=None)
Bases: object

Includes methods to load features files from DCASE datasets.
Parameters

dataset [Dataset] Instance of the Dataset used to load the data. Note that the dataset has to be
downloaded before initializing the DataGenerator. Refer to dcase-models/data/datasets.py
for a complete list of available datasets.

inputs [instance of FeatureExtractor or list of FeatureExtractor instances] Instance(s) of Fea-
tureExtractor. These are the feature extractor(s) used to generate the features. For multi-
input, pass a list of FeatureExtractor instances.

folds [list of str] List of folds to be loaded. Each fold has to be in dataset.fold_list. Note
that since the folds used at each stage of the pipeline (training, validation, evaluation) are

different, an instance of DataGenerator for each stage has to be created. e.g. [‘foldl’,
‘fold2’, “fold3’, ...]

outputs [str, FeatureExtractor or list, default="annotations’] Instance(s) of FeatureExtractor
used to generate the outputs. To use the annotations obtained from Dataset, use a string.
For multi-output, use a list of FeatureExtractor and/or strings.

batch_size [int, default=32] Number of files loaded when call get_data_batch(). Note that
the meaning of batch_size here is slightly different from the one in machine learning li-
braries like keras. In these libraries batch_size means the number of instances (sequences
in DCASE-models) used in each training step. Here batch_size is the number of files, and
therefore, the number of sequences varies in each batch.

shuffle: bool, default=True When training a model, it is typical to shuffle the dataset at the end
of each epoch. If shuffle is True (default), then the audio file list is shuffled when the class
is initialized and when shuffle_list() method is called.

train [bool, default True] When training, it is typical to feed the model with a numpy array
that contains all the data concatenated. For validation and testing it is necessary to have
the features of each file separate in order to do a file-wise evaluation. Therefore, if train
is True, the loaded data is concatenated and converted to a numpy array. If train is False
get_data() and get_data_batch() return a list, whose elements are the features of each file in
the audio_file_list.

scaler [Scaler or None, default=None] If is not None, the Scaler object is used to scale the data
after loading.

scaler_outputs [Scaler or None, default=None] Same as scaler but for the system outputs.

See also:

72 Chapter 7. Data

DCASE-models

Dataset Dataset class

FeatureExtractor FeatureExtractor class

Examples

Create instances of Dataset and FeatureExtractor with default parameters

>>> from dcase_models.data.datasets import UrbanSound8k

>>> from dcase_models.data.features import MelSpectrogram

>>> from dcase_models.data.data_generator import DataGenerator
>>> dataset = UrbanSound8k ('../datasets/UrbanSound8k")

>>> features = MelSpectrogram/()

Assuming that the dataset was downloaded and features were extracted already, we can initialize the data gen-
erators. This example uses fold1 and fold2 for training and fold3 for validation.

>>> data_gen_train = DataGenerator (

dataset, features, ['foldl', 'fold2'], train=True)
>>> data_gen_val = DataGenerator (

dataset, features, ['fold3'], train=False)

>>> X_train, Y_train = data_gen_train.get_data_batch(0)
>>> print (X_train.shape, Y_train.shape)
(212, 43, 64) (212, 10)

>>> X_val, Y_val = data_gen_val.get_data_batch(0)
>>> print (len(X_val), len(Y_val))

32 32
>>> print (X_val[0].shape, Y_val[O].shape)

(7, 43, 64) (7, 10)

>>> X_train, Y_train = data_gen_train.get_data()
>>> print (X_train.shape, Y_train.shape)
(11095, 43, 64) (11095, 10)

>>> X _val, Y_val = data_gen_val.get_data()
>>> print (len(X_val), len(Y_val))
925 925
>>> print (X_val[0] .shape, Y_val[0].shape)
(7, 43, 64) (7, 10)

Attributes

audio_file_list [list of dict] List of audio files from which the features will be loaded. Each
element in the list includes information of the original audio file (important to get the anno-
tations) and the subfolder where is the resampled (and maybe augmented) audio file. e.g.:

audio_file_list =[{‘file_original’: ‘audio/l.wav’, ‘sub_folder’: ‘original’ },
{“file_original’: ‘audio/l.wav’, ‘sub_folder’: ‘pitch_shift_1’}, {‘file_original’:
‘audio/2.wav’, ‘sub_folder’: ‘original’}, ...

__init__ (dataset, inputs, folds, outputs=’annotations’, batch_size=32, shuffle=True, train=True,

scaler=None, scaler_outputs=None)
Initialize the DataGenerator.

7.4. DataGenerator 73

DCASE-models

Generates the audio_file_list by concatenating all the files from the folds passed as an argument.

Methods
___init__ (dataset, inputs, folds[, outputs, ...]) Initialize the DataGenerator.
convert_audio_path_to_features_path(..(Jonverts audio path(s) to features path(s).
D

convert_features_path to_audio_path(..{onverts features path(s) to audio path(s).

sr])

get_datal) Return all data from the selected folds.

get_data_batch(index) Return the data from the batch given by argument.

get_data_from_file(file_index) Returns the data from the file index given by argu-
ment.

paths_remove_aug_subfolder(path) Removes the subfolder string related to augmenta-
tion from a path.

set__scaler(scaler) Set scaler object.

set_scaler._output s(scaler_outputs) Set scaler object.

shuffle 11ist() Shuffles features_file list.

convert_audio_path_to_features_path (audio_file, features_path, subfolder="")
Converts audio path(s) to features path(s).

Parameters

audio_file [str or list of str] Path(s) to the audio file(s).
Returns

features_file [str or list of str] Path(s) to the features file(s).

convert_features_path_to_audio_path (features_file, features_path, sr=None)
Converts features path(s) to audio path(s).

Parameters

features_file [str or list of str] Path(s) to the features file(s).
Returns

audio_file [str or list of str] Path(s) to the audio file(s).

get_data()
Return all data from the selected folds.

If train were set as True, the output is concatenated and converted to a numpy array. Otherwise the outputs
are lists whose elements are the features of each file.

Returns
X [list or ndarray] List or array of features for each file.
Y [list or ndarray] List or array of annotations for each file.

get_data_batch (index)
Return the data from the batch given by argument.

If train were set as True, the output is concatenated and converted to a numpy array. Otherwise the outputs
are lists whose elements are the features of each file.

Returns

74 Chapter 7. Data

DCASE-models

X [list or ndarray] List or array of features for each file.
Y [list or ndarray] List or array of annotations for each file.

get_data_from_file (file_index)
Returns the data from the file index given by argument.

Returns
X [ndarray] Array of features for each file.
Y [ndarray] Array of annotations for each file.

paths_remove_aug_ subfolder (path)
Removes the subfolder string related to augmentation from a path.

Converts DATASET_PATH/audio/original/... into DATASET_PATH/audio/. ..
Parameters
path [str or list of str] Path to be converted.
Returns
features_file [str or list of str] Path(s) to the features file(s).

set_scaler (scaler)
Set scaler object.

set_scaler_outputs (scaler_outputs)
Set scaler object.

shuffle list ()
Shuffles features_file_list.

Notes

Only shuffle the list if shuffle is True.

7.4.2 dcase _models.data.KerasDataGenerator
class dcase_models.data.KerasDataGenerator (data_generator)
Bases: tensorflow.python.keras.utils.data_utils.Sequence

__init__ (data_generator)
Initialize self. See help(type(self)) for accurate signature.

Methods
___init__(data_generator) Initialize self.
on_epoch_end() Updates indexes after each epoch

on_epoch_end()
Updates indexes after each epoch

7.4. DataGenerator 75

DCASE-models

7.5 Scaler

Scaler([normalizer]) Scaler object to normalize or scale the data.

7.5.1 dcase_models.data.Scaler
class dcase _models.data.Scaler (normalizer="standard’)
Bases: object
Scaler object to normalize or scale the data.
Parameters
normalizer [{‘standard’ or ‘minmax’}, default="standard’] Type of normalizer.

See also:

DataGenerator data generator class

Examples

>>> from dcase_models.data.scaler import Scaler
>>> import numpy as np

>>> gscaler = Scaler ('minmax')

>>> X = 3 x np.random.rand (10, 150)

>>> print (np.amin(X), np.amax (X))

>>> gcaler.fit (X)
>>> X = scaler.transform(X)
>>> print (np.amin (X), np.amax (X))

Attributes
scaler [sklearn.preprocessing.StandardScaler or list] Scaler object for standard normalizer or
list for minmax scaler.
__init_ (normalizer="standard’)
Initialize the Scaler.

If normalizer is ‘standard’, initialize the sklearn object.

Methods
__init__ ([normalizer]) Initialize the Scaler.
£1it(X[, inputs]) Fit the Scaler.
inverse_transform(X) Invert transformation.
partial_rfit(X) Fit the Scaler in one batch.
transform(X) Scale X using the scaler.

fit (X, inputs=True)
Fit the Scaler.

Parameters

76 Chapter 7. Data

DCASE-models

X' [ndarray or DataGenerator]| Data to be used in the fitting process.

inverse_transform (X)
Invert transformation.

Parameters
X [ndarray] Data to be scaled.

Returns

ndarray Scaled data. The shape of the output is the same of the input.

partial_fit (X)
Fit the Scaler in one batch.

Parameters
X [ndarray] Data to be used in the fitting process.

transform (X)
Scale X using the scaler.

Parameters
X' [ndarray] Data to be scaled.

Returns

ndarray Scaled data. The shape of the output is the same of the input.

7.5. Scaler

77

DCASE-models

78

Chapter 7. Data

CHAPTER 8

Models

8.1 ModelContainer

A ModelContainer defines an interface to standardize the behavior of machine learning models. It stores the architec-
ture and the parameters of the model. It provides methods to train and evaluate the model, and to save and load its
architecture and weights.

ModelContainer([model, model_path, ...]) Abstract base class to store and manage models.
KerasModelContainer(lmodel, model_path,...]) ModelContainer for keras models.

8.1.1 dcase_models.model.ModelContainer

class dcase_models.model.ModelContainer (model=None, model_path=None,
model_name="ModelContainer’, met-

rics=[classification’])
Bases: object

Abstract base class to store and manage models.
Parameters
model [keras model or similar] Object that defines the model (i.e keras.models.Model)
model_path [str] Path to the model file
model_name [str] Model name
metrics [list of str] List of metrics used for evaluation

__init__ (model=None, model_path=None, model_name="ModelContainer’, met-
rics=[classification’])
Initialize ModelContainer

Parameters

79

DCASE-models

model [keras model or similar] Object that defines the model (i.e keras.models.Model)

model_path [str] Path to the model file

model_name [str] Model name

metrics [list of str] List of metrics used for evaluation

Methods

_init__ ([model,

)

model_path,

model_name,

Initialize ModelContainer

build()

Missing docstring here

check_1if_model_exist s(folder, **kwargs)

Missing docstring here

evaluate(X_test, Y_test[, scaler])

Missing docstring here

get_available intermediate_outputs()

Missing docstring here

get_intermediate_output(output_ix_name)

Missing docstring here

get_number_of parameters()

Missing docstring here

load_model_ from_json(folder, **kwargs)

Missing docstring here

load_model_weight s(weights_folder)

Missing docstring here

save_model_ json(folder)

Missing docstring here

save_model_weight s(weights_folder)

Missing docstring here

train()

Missing docstring here

build ()

Missing docstring here

check_if model_exists (folder, **kwargs)

Missing docstring here

evaluate (X_test, Y_test, scaler=None)

get_available_intermediate_outputs ()

get_intermediate_output (output_ix_name)

Missing docstring here

Missing docstring here

Missing docstring here

get_number_of_parameters ()

Missing docstring here

load model_ from json (folder, **kwargs)

Missing docstring here

load_model_weights (weights_folder)

Missing docstring here

save_model_json (folder)

Missing docstring here

save_model_weights (weights_folder)

Missing docstring here

train ()

Missing docstring here

80

Chapter 8. Models

DCASE-models

8.1.2 dcase_models.model.KerasModelContainer

class dcase_models.model.KerasModelContainer (model=None,

model_path=None,
model_name="DCASEModelContainer’,
metrics=[classification’], **kwargs)

Bases: dcase_models.model.container.ModelContainer

ModelContainer for keras models.

A class that contains a keras model, the methods to train, evaluate, save and load the model. Descendants of this
class can be specialized for specific models (i.e see SB_CNN class)

Parameters

model [keras.models.Model or None, default=None] If model is None the model is created with

build().

model_path [str or None, default=None] Path to the model. If it is not None, the model loaded

from this path.

model_name [str, default=DCASEModelContainer] Model name.

dcase_models.utils.metrics.

metrics [list of str, default=[‘classification’]] List of metrics used for evaluation. See
kwargs Additional keyword arguments to load_model_from_json().
model_path=None, model_name="DCASEModelContainer’, met-

__init__ (model=None,
rics=[classification’], **kwargs)
Initialize ModelContainer

Parameters

model [keras model or similar] Object that defines the model (i.e keras.models.Model)

model_path [str] Path to the model file

model_name [str] Model name

metrics [list of str] List of metrics used for evaluation

Methods
__init__ ([model, model_path, model _name, Initialize ModelContainer
..D
build() Define your model here

check_1if_model_exist s(folder, **kwargs)

Checks if the model already exits in the path.

cut_network(layer_where_to_cut)

Cuts the network at the layer passed as argument.

evaluate(data_test, **kwargs)

Evaluates the keras model using X_test and Y_test.

fine_tuning(layer_where_to_cut[,...])

Create a new model for fine-tuning.

get_available intermediate_outputs()

Return a list of available intermediate outputs.

get_intermediate_output(output_ix_name,
inputs)

Return the output of the model in a given layer.

get_number._of_ parameters()

Missing docstring here

load_model_from_json(folder, **kwargs)

Loads a model from a model.json file in the path
given by folder.

load_model_weight s(weights_folder)

Loads self.model weights in
weights_folder/best_weights.hdf5.

Continued on next page

8.1. ModelContainer

81

DCASE-models

Table 3 — continued from previous page
load_pretrained_model_weight s([weights_fdlded pretrained weights to self.model weights.

save_model_ json(folder) Saves the model to a model.json file in the given
folder path.
save_model_weight s(weights_folder) Saves self.model weights in
weights_folder/best_weights.hdfS.
t rain(data_train, data_val[, weights_path, ...]) Trains the keras model using the data and paramaters
of arguments.
build()

Define your model here

check_if model_exists (folder, **kwargs)
Checks if the model already exits in the path.

Check if the folder/model.json file exists and includes the same model as self.model.
Parameters
folder [str] Path to the folder to check.

cut_network (layer_where_to_cut)
Cuts the network at the layer passed as argument.

Parameters

layer_where_to_cut [str or int] Layer name (str) or index (int) where cut the model.
Returns

keras.models.Model Cutted model.

evaluate (data_test, **kwargs)
Evaluates the keras model using X_test and Y_test.

Parameters

X_test [ndarray] 3D array with mel-spectrograms of test set. Shape = (N_instances, N_hops,
N_mel_bands)

Y_test [ndarray] 2D array with the annotations of test set (one hot encoding). Shape
(N_instances, N_classes)

scaler [Scaler, optional] Scaler objet to be applied if is not None.
Returns

float evaluation’s accuracy

list list of annotations (ground_truth)

list list of model predictions

fine_tuning (layer_where_to_cut, new_number_of _classes=10, new_activation="softmax’,

freeze_source_model=True, new_model=None)
Create a new model for fine-tuning.

Cut the model in the layer_where_to_cut layer and add a new fully-connected layer.
Parameters

layer_where_to_cut [str or int] Name (str) of index (int) of the layer where cut the model.
This layer is included in the new model.

82 Chapter 8. Models

DCASE-models

new_number_of_classes [int] Number of units in the new fully-connected layer (number
of classes).

new_activation [str] Activation of the new fully-connected layer.
freeze_source_model [bool] If True, the source model is set to not be trainable.

new_model [Keras Model] If is not None, this model is added after the cut model. This is
useful if you want add more than a fully-connected layer.

get_available_intermediate_outputs ()
Return a list of available intermediate outputs.

Return a list of model’s layers.
Returns
list of str List of layers names.

get_intermediate_output (output_ix_name, inputs)
Return the output of the model in a given layer.

Cut the model in the given layer and predict the output for the given inputs.
Returns
ndarray Output of the model in the given layer.

get_number_of_parameters ()
Missing docstring here

load_model_from_json (folder, **kwargs)
Loads a model from a model.json file in the path given by folder. The model is load in self.model attribute.

Parameters
folder [str] Path to the folder that contains model.json file

load_model_weights (weights_folder)
Loads self.model weights in weights_folder/best_weights.hdf5.

Parameters
weights_folder [str] Path to save the weights file.

load_pretrained_model_weights (weights_folder="./pretrained_weights’)
Loads pretrained weights to self.model weights.

Parameters
weights_folder [str] Path to load the weights file

save_model_json (folder)
Saves the model to a model.json file in the given folder path.

Parameters
folder [str] Path to the folder to save model.json file

save_model_weights (weights_folder)
Saves self.model weights in weights_folder/best_weights.hdf5.

Parameters

weights_folder [str] Path to save the weights file

8.1.

ModelContainer 83

DCASE-models

train (data_train, data_val, weights_path="./", optimizer="Adam’, learning_rate=0.001,
early_stopping=100, considered_improvement=0.01, losses="categorical_crossentropy’,
loss_weights=[1], sequence_time_sec=0.5, metric_resolution_sec=1.0, label_list=[], shuf-
fle=True, **kwargs_keras_fit)
Trains the keras model using the data and paramaters of arguments.

Parameters

X_train [ndarray] 3D array with mel-spectrograms of train set. Shape = (N_instances,
N_hops, N_mel_bands)

Y_train [ndarray] 2D array with the annotations of train set (one hot encoding). Shape
(N_instances, N_classes)

X_val [ndarray] 3D array with mel-spectrograms of validation set. Shape = (N_instances,
N_hops, N_mel_bands)

Y_val [ndarray] 2D array with the annotations of validation set (one hot encoding). Shape
(N_instances, N_classes)

weights_path [str] Path where to save the best weights of the model in the training process
weights_path [str] Path where to save log of the training process

loss_weights [list] List of weights for each loss function (‘categorical_crossentropy’,
‘mean_squared_error’, ‘prototype_loss’)

optimizer [str] Optimizer used to train the model
learning_rate [float] Learning rate used to train the model
batch_size [int] Batch size used in the training process
epochs [int] Number of training epochs

fit_verbose [int] Verbose mode for fit method of Keras model

8.2 Implemented models

Each implemented model has its own class that inherits from a specific ModelContainer, such as KerasModelContainer.

MLP([model, model_path, metrics, n_classes, ...]) KerasModelContainer for a generic MLP model.
SB_CNN([model, model_path, metrics, ...]) KerasModelContainer for SB_CNN model.
SB_CNN_SED([model, model_path, metrics, ...]) KerasModelContainer for SB_CNN_SED model.
A_CRNN([model, model_path, metrics, ...]) KerasModelContainer for A_ CRNN model.
VGG1i sh([model, model_path, metrics, ...]) KerasModelContainer for VGGish model

SMe 1([model, model_path, metrics, ...]) KerasModelContainer for SMel model.
MST([model, model_path, metrics, mel_bands, ...]) KerasModelContainer for MST model.

8.2.1 dcase_models.model.MLP

class dcase_models.model .MLP (model=None, model_path=None, metrics=[classification’],
n_classes=10, n_frames=64, n_freqs=12, hid-
den_layers_size=[128, 64], dropout_rates=[0.5, 0.5], hid-
den_activation="relu’, 12_reg=1e-05, final_activation="softmax’,

temporal_integration="mean’, **kwargs)
Bases: dcase_models.model.container.KerasModelContainer

84 Chapter 8. Models

DCASE-models

KerasModelContainer for a generic MLP model.

Parameters

n_classes [int, default=10] Number of classes (dimmension output).

n_frames [int or None, default=64] Length of the input (number of frames of each sequence).
Use None to not use frame-level input and output. In this case the input has shape (None,
n_freqs).

n_freqs [int, default=12] Number of frequency bins. The model’s input has shape (n_frames,
n_fregs).

hidden_layers_size [list of int, default=[128, 64]] Dimmension of each hidden layer. Note that
the length of this list defines the number of hidden layers.

dropout_rates [list of float, default=[0.5, 0.5]] List of dropout rate use after each hidden layer.
The length of this list must be equal to the length of hidden_layers_size. Use 0.0 (or nega-
tive) to not use dropout.

hidden_activation [str, default="relu’] Activation for hidden layers.

12_reg [float, default=1e-5] Weight of the 12 regularizers. Use 0.0 to not use regularization.

final_activation [str, default="softmax’] Activation of the last layer.

temporal_integration [{‘mean’, ‘sum’, ‘autopool’}, default="mean’] Temporal integration op-
eration used after last layer.

kwargs Additional keyword arguments to Dense layers.

Examples

>>> from dcase_models.model .models import MLP

>>> model_container = MLP ()

>>> model_container.model.summary ()

Layer (type) Output Shape Param #
input (InputLayer) (None, 64: 12) N 0 o
time_distributed_1 (TimeDist (None, 64, 128) 1664
dropout_1 (Dropout) (None, 64, 128) 0
time_distributed_2 (TimeDist (None, 64, 64) 8256
dropout_2 (Dropout) (None, 64, 64) 0
time_distributed_3 (TimeDist (None, 64, 10) 650
temporal_integration (Lambda (None, 10) 0

Total params: 10,570
Trainable params: 10,570
Non-trainable params: 0

Attributes

8.2.

Implemented models

85

DCASE-models

model [keras.models.Model] Keras model.

__init__ (model=None, model_path=None, metrics=[’classification’], n_classes=10,
n_frames=64, n_freqs=12, hidden_layers_size=[128, 64], dropout_rates=[0.5,
0.5], hidden_activation="relu’, 12_reg=1e-05, final_activation="softmax’, tempo-

ral_integration="mean’, **kwargs)
Initialize ModelContainer

Parameters
model [keras model or similar] Object that defines the model (i.e keras.models.Model)
model_path [str] Path to the model file
model_name [str] Model name

metrics [list of str] List of metrics used for evaluation

Methods
___init__([model, model_path, metrics, ...]) Initialize ModelContainer
build() Missing docstring here
check_1if_model_exists(folder, **kwargs) Checks if the model already exits in the path.
cut_network(layer_where_to_cut) Cuts the network at the layer passed as argument.
evaluate(data_test, **kwargs) Evaluates the keras model using X_test and Y_test.
fine_tuning(layer_where_to_cut[,...]) Create a new model for fine-tuning.

get_available intermediate_outputs() Return alist of available intermediate outputs.
get_intermediate_output(output_ix_name, Return the output of the model in a given layer.

inputs)

get_number_of parameters() Missing docstring here

load_model_ from_json(folder, **kwargs) Loads a model from a model.json file in the path
given by folder.

load_model_weight s(weights_folder) Loads self.model weights in

weights_folder/best_weights.hdf5.
load _pretrained_model_ weight s([weights_fdldedy pretrained weights to self.model weights.

save_model_ json(folder) Saves the model to a model.json file in the given
folder path.
save_model_weight s(weights_folder) Saves self.model weights in
weights_folder/best_weights.hdf5.
t rain(data_train, data_val[, weights_path, ...]) Trains the keras model using the data and paramaters
of arguments.
build()

Missing docstring here

check_if model_exists (folder, **kwargs)
Checks if the model already exits in the path.

Check if the folder/model.json file exists and includes the same model as self.model.
Parameters
folder [str] Path to the folder to check.

cut_network (layer_where_to_cut)
Cuts the network at the layer passed as argument.

86 Chapter 8. Models

DCASE-models

Parameters

layer_where_to_cut [str or int] Layer name (str) or index (int) where cut the model.
Returns

keras.models.Model Cutted model.

evaluate (data_test, **kwargs)
Evaluates the keras model using X_test and Y_test.

Parameters

X_test [ndarray] 3D array with mel-spectrograms of test set. Shape = (N_instances, N_hops,
N_mel_bands)

Y_test [ndarray] 2D array with the annotations of test set (one hot encoding). Shape
(N_instances, N_classes)

scaler [Scaler, optional] Scaler objet to be applied if is not None.
Returns

float evaluation’s accuracy

list list of annotations (ground_truth)

list list of model predictions

fine_tuning (layer_where_to_cut, new_number_of _classes=10, new_activation="softmax’,
[freeze_source_model=True, new_model=None)
Create a new model for fine-tuning.

Cut the model in the layer_where_to_cut layer and add a new fully-connected layer.
Parameters

layer_where_to_cut [str or int] Name (str) of index (int) of the layer where cut the model.
This layer is included in the new model.

new_number_of_classes [int] Number of units in the new fully-connected layer (number
of classes).

new_activation [str] Activation of the new fully-connected layer.
freeze_source_model [bool] If True, the source model is set to not be trainable.

new_model [Keras Model] If is not None, this model is added after the cut model. This is
useful if you want add more than a fully-connected layer.

get_available_intermediate_outputs ()
Return a list of available intermediate outputs.

Return a list of model’s layers.
Returns
list of str List of layers names.

get_intermediate_output (output_ix_name, inputs)
Return the output of the model in a given layer.

Cut the model in the given layer and predict the output for the given inputs.
Returns

ndarray Output of the model in the given layer.

8.2. Implemented models 87

DCASE-models

get_number_ of_ parameters ()
Missing docstring here

load_model_from_3json (folder, **kwargs)
Loads a model from a model.json file in the path given by folder. The model is load in self.model attribute.

Parameters
folder [str] Path to the folder that contains model.json file

load_model_weights (weights_folder)
Loads self.model weights in weights_folder/best_weights.hdf5.

Parameters
weights_folder [str] Path to save the weights file.

load pretrained model weights (weights_folder="./pretrained_weights’)
Loads pretrained weights to self.model weights.

Parameters
weights_folder [str] Path to load the weights file

save_model_json (folder)
Saves the model to a model.json file in the given folder path.

Parameters
folder [str] Path to the folder to save model.json file

save_model_weights (weights_folder)
Saves self.model weights in weights_folder/best_weights.hdf5.

Parameters
weights_folder [str] Path to save the weights file

train (data_train, data_val, weights_path="./", optimizer="Adam’, learning_rate=0.001,
early_stopping=100, considered_improvement=0.01, losses="categorical_crossentropy’,
loss_weights=[1], sequence_time_sec=0.5, metric_resolution_sec=1.0, label_list=[], shuf-

fle=True, **kwargs_keras_fit)
Trains the keras model using the data and paramaters of arguments.

Parameters

X_train [ndarray] 3D array with mel-spectrograms of train set. Shape = (N_instances,
N_hops, N_mel_bands)

Y_train [ndarray] 2D array with the annotations of train set (one hot